Skip to main content

Advertisement

Log in

MiR-485-3p/MiR-543/MiR-337-3p is Required for the Oncogenic Potential of the Hsa_circ_0007385-MEMO1 Axis in Colorectal Cancer

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) play regulatory roles in the biological processes of multiple tumors, colorectal cancer (CRC) included. Our previous study probed the impact of circ_0007385 on CRC cell malignant behaviors, while the underlying mechanism remains obscure. In this work, the potential mechanism of hsa_circ_0007385 in CRC was probed. Functional experiments were implemented for probing the function of hsa_circ_0007385 in CRC. Further analysis revealed the relation between hsa_circ_0007385 and miRNAs. A xenograft mouse model was implemented for probing the influence of hsa_circ_0007385 on CRC growth and metastasis in vivo. Hsa_circ_0007385 was up-regulated in CRC. Hsa_circ_0007385 positively regulated its host gene mediator of cell motility 1 (MEMO1). Hsa_circ_0007385 silencing inhibited CRC progression. Hsa_circ_0007385 and MEMO1 bond to miR-485-3p/miR-543/miR-337-3p, and these three miRNAs were lowly expressed in CRC, and negatively modulated by hsa_circ_0007385. Hsa_circ_0007385 functioned as an oncogene in CRC in a miR-485-3p/miR-543/miR-337-3p- or MEMO1-dependent manner. Hsa_circ_0007385 promoted CRC progression via modulating miR-485-3p/miR-543/miR-337-3p/MEMO1 axis. Thus, circ-MEMO1 might be a promising therapeutic target for CRC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alavi M et al (2022) The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: different mechanisms of action. Cell Mol Biomed Rep 2:10–21

    Article  Google Scholar 

  • Alsaedy H, Mirzaei AA, Alhashimi RAH (2022) Investigating the structure and function of long non-coding RNA (LncRNA) and its role in cancer. Cell Mol Biomed Rep. https://doi.org/10.2139/ssrn.4470175

    Article  Google Scholar 

  • Azizi Dargahlou S et al (2023) MicroRNAs; their therapeutic and biomarker properties. Cell Mol Biomed Rep 3(2):73–88

    Article  Google Scholar 

  • Bilal I et al (2021) Cytotoxic effect of diferuloylmethane, a derivative of turmeric on different human glioblastoma cell lines. Cell Mol Biomed Rep 1:14–22

    Article  Google Scholar 

  • Biller LH, Schrag D (2021) Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA 325(7):669–685

    Article  CAS  PubMed  Google Scholar 

  • Bin H et al (2022) The correlation between miR -34a-3p, miR -31, PLEK2 and the occurrence, development and prognosis of colorectal cancer. Cell Mol Biol (noisy-Le-Grand) 68(1):192–200

    Article  PubMed  Google Scholar 

  • Chen RX et al (2019) Circular RNA circRNA_0000285 promotes cervical cancer development by regulating FUS. Eur Rev Med Pharmacol Sci 23(20):8771–8778

    PubMed  Google Scholar 

  • Chen K et al (2021a) Pathological features and prognostication in colorectal cancer. Curr Oncol 28(6):5356–5383

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L et al (2021b) The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 22(2):1706–1728

    Article  CAS  PubMed  Google Scholar 

  • Chen J et al (2021c) Circular RNA circRHOBTB3 represses metastasis by regulating the HuR-mediated mRNA stability of PTBP1 in colorectal cancer. Theranostics 11(15):7507–7526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C et al (2022) MicroRNA214 expression inhibits HCC cell proliferation through PTK2b/ Pyk2. Cell Mol Biol (noisy-Le-Grand) 68(1):20–25

    Article  PubMed  Google Scholar 

  • Dekker E et al (2019) Colorectal cancer. Lancet 394(10207):1467–1480

    Article  PubMed  Google Scholar 

  • Ding C et al (2020) Exosomal circ-MEMO1 promotes the progression and aerobic glycolysis of non-small cell lung cancer through targeting MiR-101-3p/KRAS axis. Front Genet 11:962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding D et al (2022) Circ_0007385 regulates cell proliferation, apoptosis and stemness via targeting miR-493-3p/RAB22A axis in non-small cell lung cancer. Thorac Cancer 13(4):571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Cuellar CM et al (2021) Particulate matter (PM(10)) promotes cell invasion through epithelial-mesenchymal transition (EMT) by TGF-β activation in A549 lung cells. Int J Mol Sci 22(23):12632

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y et al (2021) Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis. Mol Cancer 20(1):93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Zhou Y (2022) Evaluation of increased microRNA-21 in the serum of patients with cardia cancer. Cell Mol Biol (noisy-Le-Grand) 68(4):60–65

    Article  PubMed  Google Scholar 

  • Jiang Z et al (2021) circ-Keratin 6c promotes malignant progression and immune evasion of colorectal cancer through microRNA-485-3p/programmed cell death receptor ligand 1 axis. J Pharmacol Exp Ther 377(3):358–367

    Article  CAS  PubMed  Google Scholar 

  • Kanwal N et al (2023) Comprehensive analysis of microRNA (miRNA) in cancer cells. Cell Mol Biomed Rep 3(2):89–97

    Article  Google Scholar 

  • Kristensen LS et al (2022) The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 19(3):188–206

    Article  CAS  PubMed  Google Scholar 

  • Labrecque CL et al (2021) Identification of phenazine-based MEMO1 small-molecule inhibitors: virtual screening, fluorescence polarization validation, and inhibition of breast cancer migration. ChemMedChem 16(7):1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2018) Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7. J Pathol 246(2):166–179

    Article  CAS  PubMed  Google Scholar 

  • Li C et al (2020) Integrated omics of metastatic colorectal cancer. Cancer Cell 38(5):734-747.e9

    Article  CAS  PubMed  Google Scholar 

  • Li F et al (2021) Circular RNAs in cancer: limitations in functional studies and diagnostic potential. Semin Cancer Biol 75:49–61

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li Q (2021) miR-543 impairs breast cancer cell phenotypes by targeting and suppressing ubiquitin-conjugating enzyme E2T (UBE2T). Bioengineered 12(2):12394–12406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Mohammadi MR (2023) Combined diagnostic efficacy of red blood cell distribution width (RDW), prealbumin (PA), platelet-to-lymphocyte ratio (PLR), and carcinoembryonic antigen (CEA) as biomarkers in the diagnosis of colorectal cancer. Cell Mol Biomed Rep 3(2):98–106

    Article  Google Scholar 

  • Liu Z et al (2019) Circular RNA hsa_circ_001783 regulates breast cancer progression via sponging miR-200c-3p. Cell Death Dis 10(2):55

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X et al (2021) CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner. Mol Cancer 20(1):114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z et al (2022) Circ_0022340 promotes colorectal cancer progression via HNRNPC/EBF1/SYT7 or miR-382–5p/ELK1 axis. Cell Mol Biol (noisy-Le-Grand) 68(7):107–116

    Article  PubMed  Google Scholar 

  • Pan Y et al (2021) MiR-337-3p suppresses migration and invasion of breast cancer cells by downregulating ESRP1. Acta Histochem 123(7):151777

    Article  CAS  PubMed  Google Scholar 

  • Saucedo-Sariñana AM et al (2022) Circulating cell-free-DNA concentration is a good biomarker for diagnosis of colorectal cancer in Mexican patients. Cell Mol Biol (noisy-Le-Grand) 68(6):1–8

    Article  PubMed  Google Scholar 

  • Shang A et al (2020) Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis. Mol Cancer 19(1):117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J et al (2022) Effects of mFOLFOX6 regimen combined with carrelizumab on immune function and prognosis in patients with microsatellite instability colorectal cancer. Cell Mol Biol (noisy-Le-Grand) 67(5):356–362

    Article  PubMed  Google Scholar 

  • Tabin S et al (2022) Medical and medicinal importance of Rheum spp. collected from different altitudes of the Kashmir Himalayan range. Cell Mol Biomed Rep. https://doi.org/10.55705/cmbr.2022.349901.1050

    Article  Google Scholar 

  • Taherdangkoo K et al (2020) miR-485-3p suppresses colorectal cancer via targeting TPX2. Bratisl Lek Listy 121(4):302–307

    CAS  PubMed  Google Scholar 

  • Tourang M et al (2021) Association between Human Endogenous Retrovirus K gene expression and breast cancer. Cell Mol Biomed Rep 1:7–13

    Article  Google Scholar 

  • Wang Z et al (2020) miR-337-3p inhibits gastric tumor metastasis by targeting ARHGAP10. Mol Med Rep 21(2):705–719

    CAS  PubMed  Google Scholar 

  • Wei M et al (2022) Circ_0007385 promotes the proliferation and inhibits the apoptosis of non-small cell lung cancer cells via miR-337–3p-dependent regulation of LMO3. Histol Histopathol 38:797–810

    PubMed  Google Scholar 

  • Xu H et al (2020a) CircRNA_0000392 promotes colorectal cancer progression through the miR-193a-5p/PIK3R3/AKT axis. J Exp Clin Cancer Res 39(1):283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K et al (2020b) miR-219a-1 inhibits colon cancer cells proliferation and invasion by targeting MEMO1. Cancer Biol Ther 21(12):1163–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X et al (2020c) CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer 19(1):128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Yang J (2022) The effect of 5A nursing combined with psychological nursing on the immune function, cancer-related fatigue and complications of patients undergoing radical resection of colorectal cancer. Cell Mol Biol (noisy-Le-Grand) 68(1):169–176

    Article  PubMed  Google Scholar 

  • Yan H, Bu P (2021) Non-coding RNA in cancer. Essays Biochem 65(4):625–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J et al (2022) Hsa_circRNA_0088036 acts as a ceRNA to promote bladder cancer progression by sponging miR-140-3p. Cell Death Dis 13(4):322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W et al (2021a) CircRNA circFOXK2 facilitates oncogenesis in breast cancer via IGF2BP3/miR-370 axis. Aging (albany NY) 13(14):18978–18992

    Article  CAS  PubMed  Google Scholar 

  • Zhang M et al (2021b) circRNA-miRNA-mRNA in breast cancer. Clin Chim Acta 523:120–130

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Su T, Xiao M (2022) RUNX3-regulated circRNA METTL3 inhibits colorectal cancer proliferation and metastasis via miR-107/PER3 axis. Cell Death Dis 13(6):550

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J et al (2019) CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis 10(12):885

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou WY et al (2020) Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer 19(1):172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G et al (2021) CircRNA: a novel potential strategy to treat thyroid cancer (review). Int J Mol Med. https://doi.org/10.3892/ijmm.2021.5034

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

JY: methodology, software; GL: resources, data curation; XZ: conceptualization, supervision, writing—reviewing and editing, Funding acquisition. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xinguo Zhu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, J., Liu, G. & Zhu, X. MiR-485-3p/MiR-543/MiR-337-3p is Required for the Oncogenic Potential of the Hsa_circ_0007385-MEMO1 Axis in Colorectal Cancer. Biochem Genet 62, 1182–1199 (2024). https://doi.org/10.1007/s10528-023-10472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-023-10472-z

Keywords

Navigation