Skip to main content

Advertisement

Log in

Silencing CircEIF3I/miR-526b-5p Axis Epigenetically Targets HGF/c-Met Signal to Hinder the Malignant Growth, Metastasis and Angiogenesis of Hepatocellular Carcinoma

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Background

Hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition factor (c-Met) is important for the diagnosis and prognosis of hepatocellular carcinoma (HCC). Circular RNAs (circRNAs) are key regulators of HCC progression, and this study focused on circRNA eukaryotic translation initiation factor 3 subunit I (circEIF3I) with HGF/c-Met in HCC.

Methods

Levels of circEIF3I, microRNA (miR)-526b-5p, HGF, E-cadherin, N-cadherin, and Vimentin were detected by Gene Expression Omnibus database, quantitative PCR and western blotting. Cell functions were measured by detecting cell growth (cell proliferation assay with WST-1 and EdU, colony formation assay, flow cytometry, caspase 3 activity assay, and nude mouse tumorigenicity assay), metastasis (transwell assay and western blotting), angiogenesis (endothelial tube formation assay). Molecular interaction was determined dual-luciferase reporter assay, RNA immunoprecipitation, and Pearson correlation analysis.

Results

Expression of circEIF3I was upregulated in HCC tissues. Knockdown of circEIF3I suppressed cell proliferation epithelial-mesenchymal transition, migration, invasion and tube formation ability but promoted apoptosis of HCC cells. CircEIF3I could sponge miR-526b-5pto regulate downstream HGF. Functionally, circEIF3I regulation in HCC cell progression was associated with miR-526b-5p sponging function and HGF upregulation could attenuate tumor-inhibiting roles of miR-526b-5p. HCC tumor growth was delayed by interfering circEIF3I.

Conclusion

CircEIF3I was an oncogenic circRNA in HCC-, and interfering circEIF3I exhibited anti-HCC activity via circEIF3I-miR-526b-5p-HGF/c-Met pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Please contact the correspondence author for the data request.

References

  • Ahmadian E, Pennefather PS, Eftekhari A, Heidari R, Eghbal MA (2016) Role of renin-angiotensin system in liver diseases: an outline on the potential therapeutic points of intervention. Expert Rev Gastroenterol Hepatol 10(11):1279–1288

    Article  CAS  Google Scholar 

  • Bak RO, Mikkelsen JG (2014) miRNA sponges: soaking up miRNAs for regulation of gene expression. Wiley Interdiscip Rev RNA 5(3):317–333

    Article  CAS  Google Scholar 

  • Benkhoucha M, Tran NL, Breville G, Senoner I, Jandus C, Lalive P (2021) c-Met enforces proinflammatory and migratory features of human activated CD4(+) T cells. Cell Mol Immunol 18(8):2051–2053

    Article  CAS  Google Scholar 

  • Best J, Schotten C, Lohmann G, Gerken G, Dechene A (2017) Tivantinib for the treatment of hepatocellular carcinoma. Expert Opin Pharmacother 18(7):727–733

    Article  CAS  Google Scholar 

  • Bouattour M, Raymond E, Qin S, Cheng AL, Stammberger U, Locatelli G, Faivre S (2018) Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology 67(3):1132–1149

    Article  Google Scholar 

  • Fan QH, Yu R, Huang WX, Cui XX, Luo BH, Zhang LY (2014) The has-miR-526b binding-site rs8506G>a polymorphism in the lincRNA-NR_024015 exon identified by GWASs predispose to non-cardia gastric cancer risk. PLoS ONE 9(3):e90008

    Article  Google Scholar 

  • Fu L, Zhang J, Lin Z, Li Y, Qin G (2022) CircularRNA circ_0071269 knockdown protects against from diabetic cardiomyopathy injury by microRNA-145/gasdermin A axis. Bioengineered 13(2):2398–2411

    Article  CAS  Google Scholar 

  • Fuchs Y, Steller H (2015) Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol 16(6):329–344

    Article  CAS  Google Scholar 

  • Garcia-Vilas JA, Medina MA (2018) Updates on the hepatocyte growth factor/c-Met axis in hepatocellular carcinoma and its therapeutic implications. World J Gastroenterol 24(33):3695–3708

    Article  CAS  Google Scholar 

  • Ghosh A, Dasgupta D, Ghosh A, Roychoudhury S, Kumar D, Gorain M, Butti R, Datta S, Agarwal S, Gupta S et al (2017) MiRNA199a-3p suppresses tumor growth, migration, invasion and angiogenesis in hepatocellular carcinoma by targeting VEGFA, VEGFR1, VEGFR2, HGF and MMP2. Cell Death Dis 8(3):e2706

    Article  Google Scholar 

  • Giglio S, Vecchione A (2015) c-Met and miRs in Cancer. Biomedicines 3(1):32–44

    Article  CAS  Google Scholar 

  • Goyal L, Muzumdar MD, Zhu AX (2013) Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res 19(9):2310–2318

    Article  CAS  Google Scholar 

  • Granito A, Muratori L, Lalanne C, Quarneti C, Ferri S, Guidi M, Lenzi M, Muratori P (2021) Hepatocellular carcinoma in viral and autoimmune liver diseases: Role of CD4+ CD25+ Foxp3+ regulatory T cells in the immune microenvironment. World J Gastroenterol 27(22):2994–3009

    Article  CAS  Google Scholar 

  • Han L, Liu S, Liang J, Guo Y, Shen S, Guo X, Dong Z, Guo W (2017) A genetic polymorphism at miR-526b binding-site in the lincRNA-NR_024015 exon confers risk of esophageal squamous cell carcinoma in a population of North China. Mol Carcinog 56(3):960–971

    Article  CAS  Google Scholar 

  • Han TS, Hur K, Cho HS, Ban HS (2020) Epigenetic associations between lncRNA/circRNA and miRNA in hepatocellular carcinoma. Cancers. https://doi.org/10.3390/cancers12092622

    Article  Google Scholar 

  • Huang X, Gan G, Wang X, Xu T, Xie W (2019) The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy 15(7):1258–1279

    Article  CAS  Google Scholar 

  • Karagonlar ZF, Korhan P, Atabey N (2015) Targeting c-Met in cancer by microRNAs: potential therapeutic applications in hepatocellular carcinoma. Drug Dev Res 76(7):357–367

    Article  CAS  Google Scholar 

  • Kim KH, Jung JY, Son ED, Shin DW, Noh M, Lee TR (2015) miR-526b targets 3’ UTR of MMP1 mRNA. Exp Mol Med 47:e178

    Article  CAS  Google Scholar 

  • Kong Q, Fan Q, Ma X, Li J, Ma R (2020) CircRNA circUGGT2 contributes to hepatocellular carcinoma development via regulation of the miR-526b-5p/RAB1A axis. Cancer Manag Res 12:10229–10241

    Article  CAS  Google Scholar 

  • Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, Zhang S, Wang H, Qin W, Lu ZJ et al (2019a) Microarray is an efficient tool for circRNA profiling. Brief Bioinform 20(4):1420–1433

    Article  CAS  Google Scholar 

  • Li H, Wang J, Xu F, Wang L, Sun G, Wang J, Yang Y (2019b) By downregulating PBX3, miR-526b suppresses the epithelial-mesenchymal transition process in cervical cancer cells. Future Oncol 15(14):1577–1591

    Article  CAS  Google Scholar 

  • Li M, Duan L, Li Y, Liu B (2019c) Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases. Life Sci 233:116440

    Article  CAS  Google Scholar 

  • Liu X, Yang L, Tu J, Cai W, Zhang M, Shou Z, Yao Y, Xu Q (2017) microRNA-526b servers as a prognostic factor and exhibits tumor suppressive property by targeting Sirtuin 7 in hepatocellular carcinoma. Oncotarget 8(50):87737–87749

    Article  Google Scholar 

  • Liu Y, Yang C, Zhao Y, Chi Q, Wang Z, Sun B (2019) Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging (albany NY) 11(24):12328–12344

    Article  CAS  Google Scholar 

  • Liu Y, Tan J, Ou S, Chen J, Chen L (2020a) MicroRNA-101-3p suppresses proliferation and migration in hepatocellular carcinoma by targeting the HGF/c-Met pathway. Invest New Drugs 38(1):60–69

    Article  CAS  Google Scholar 

  • Liu W, Wang D, Wang X, Liu P, Yan M (2020b) hsa_circ_0085539 promotes osteosarcoma progression by regulating miR-526b-5p and SERP1. Mol Ther Oncolytics 19:163–177

    Article  CAS  Google Scholar 

  • Liu G, Wan Q, Li J, Hu X, Gu X, Xu S (2020c) Circ_0038467 regulates lipopolysaccharide-induced inflammatory injury in human bronchial epithelial cells through sponging miR-338-3p. Thorac Cancer 11(5):1297–1308

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Lu XL, Zeng J, Chen YL, He PM, Wen MX, Ren MD, Hu YN, Lu GF, He S (2013) Sinomenine hydrochloride inhibits human hepatocellular carcinoma cell growth in vitro and in vivo: involvement of cell cycle arrest and apoptosis induction. Int J Oncol 42(1):229–238

    Article  CAS  Google Scholar 

  • Lu HC, Yao JQ, Yang X, Han J, Wang JZ, Xu K, Zhou R, Yu H, Lv Q, Gu M (2020) Identification of a potentially functional circRNA-miRNA-mRNA regulatory network for investigating pathogenesis and providing possible biomarkers of bladder cancer. Cancer Cell Int 20:31

    Article  CAS  Google Scholar 

  • Majumder M, Landman E, Liu L, Hess D, Lala PK (2015) COX-2 Elevates Oncogenic miR-526b in Breast Cancer by EP4 Activation. Mol Cancer Res 13(6):1022–1033

    Article  CAS  Google Scholar 

  • Maleki Dizaj S, Sharifi S, Ahmadian E, Eftekhari A, Adibkia K, Lotfipour F (2019) An update on calcium carbonate nanoparticles as cancer drug/gene delivery system. Expert Opin Drug Deliv 16(4):331–345

    Article  CAS  Google Scholar 

  • Miura K, Miura S, Yamasaki K, Higashijima A, Kinoshita A, Yoshiura K, Masuzaki H (2010) Identification of pregnancy-associated microRNAs in maternal plasma. Clin Chem 56(11):1767–1771

    Article  CAS  Google Scholar 

  • Naeli P, Pourhanifeh MH, Karimzadeh MR, Shabaninejad Z, Movahedpour A, Tarrahimofrad H, Mirzaei HR, Bafrani HH, Savardashtaki A, Mirzaei H et al (2020) Circular RNAs and gastrointestinal cancers: epigenetic regulators with a prognostic and therapeutic role. Crit Rev Oncol Hematol 145:102854

    Article  Google Scholar 

  • Ogunwobi OO, Puszyk W, Dong HJ, Liu C (2013) Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma. PLoS ONE 8(5):e63765

    Article  CAS  Google Scholar 

  • Osada S, Kanematsu M, Imai H, Goshima S (2008) Clinical significance of serum HGF and c-Met expression in tumor tissue for evaluation of properties and treatment of hepatocellular carcinoma. Hepatogastroenterology 55(82–83):544–549

    CAS  Google Scholar 

  • Passos-Silva DG, Brandan E, Santos RA (2015) Angiotensins as therapeutic targets beyond heart disease. Trends Pharmacol Sci 36(5):310–320

    Article  CAS  Google Scholar 

  • Qiao S, Zhang X, Wu Z, Zhang L, Sun S (2021) snoRNA23 enhances the progression of hepatocellular carcinoma via regulation of the Wnt/?-catenin pathway. Cell Mol Biol (noisy-Le-Grand). https://doi.org/10.14715/cmb/2021.67.2.24

    Article  Google Scholar 

  • Rimassa L, Assenat E, Peck-Radosavljevic M, Pracht M, Zagonel V, Mathurin P, Rota Caremoli E, Porta C, Daniele B, Bolondi L et al (2018) Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): a final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol 19(5):682–693

    Article  CAS  Google Scholar 

  • Santoro A, Simonelli M, Rodriguez-Lope C, Zucali P, Camacho LH, Granito A, Senzer N, Rimassa L, Abbadessa G, Schwartz B et al (2013) A Phase-1b study of tivantinib (ARQ 197) in adult patients with hepatocellular carcinoma and cirrhosis. Br J Cancer 108(1):21–24

    Article  CAS  Google Scholar 

  • Shao S, Hu Q, Wu W, Wang M, Huang J, Zhao X, Tang G, Liang T (2020) Tumor-triggered personalized microRNA cocktail therapy for hepatocellular carcinoma. Biomater Sci 8(23):6579–6591

    Article  CAS  Google Scholar 

  • Sun Z, Niu S, Xu F, Zhao W, Ma R, Chen M (2020) CircAMOTL1 Promotes tumorigenesis through miR-526b/SIK2 axis in cervical cancer. Frontiers Cell Dev Biol 8:568190

    Article  Google Scholar 

  • Sun J, Xin K, Leng C, Ge J (2021) Down-regulation of SNHG16 alleviates the acute lung injury in sepsis rats through miR-128-3p/HMGB3 axis. BMC Pulm Med 21(1):191

    Article  CAS  Google Scholar 

  • Wang H, Rao B, Lou J, Li J, Liu Z, Li A, Cui G, Ren Z, Yu Z (2020a) The function of the HGF/c-Met Axis in hepatocellular carcinoma. Frontiers Cell Dev Biol 8:55

    Article  CAS  Google Scholar 

  • Wang YF, Li MY, Tang YF, Jia M, Liu Z, Li HQ (2020b) Circular RNA circEIF3I promotes papillary thyroid carcinoma progression through competitively binding to miR-149 and upregulating KIF2A expression. Am J Cancer Res 10(4):1130–1139

    CAS  Google Scholar 

  • Wang Y, Wang Y, Qin Z, Cai S, Yu L, Hu H, Zeng S (2021) The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin Drug Metab Toxicol 17(3):291–306

    Article  CAS  Google Scholar 

  • Wei X, Zheng W, Tian P, He Y, Liu H, Peng M, Li X, Liu X (2020) Oncogenic hsa_circ_0091581 promotes the malignancy of HCC cell through blocking miR-526b from degrading c-MYC mRNA. Cell Cycle 19(7):817–824

    Article  CAS  Google Scholar 

  • Wu F, Wang F, Yang Q, Zhang Y, Cai K, Liu L, Li S, Zheng Y, Zhang J, Gui Y et al (2020) Upregulation of miRNA-23a-3p rescues high glucose-induced cell apoptosis and proliferation inhibition in cardiomyocytes. Vitro Cell Dev Biol Anim 56(10):866–877

    Article  CAS  Google Scholar 

  • Xia F, Chen Y, Jiang B, Bai N, Li X (2020) Hsa_circ_0011385 accelerates the progression of thyroid cancer by targeting miR-361-3p. Cancer Cell Int 20:49

    Article  Google Scholar 

  • Xiang Q, Zhen Z, Deng DY, Wang J, Chen Y, Li J, Zhang Y, Wang F, Chen N, Chen H et al (2015) Tivantinib induces G2/M arrest and apoptosis by disrupting tubulin polymerization in hepatocellular carcinoma. J Exp Clin Cancer Res 34:118

    Article  Google Scholar 

  • Yang X, Zhang XF, Lu X, Jia HL, Liang L, Dong QZ, Ye QH, Qin LX (2014) MicroRNA-26a suppresses angiogenesis in human hepatocellular carcinoma by targeting hepatocyte growth factor-cMet pathway. Hepatology 59(5):1874–1885

    Article  CAS  Google Scholar 

  • Yasuda S, Goto Y, Sumida H, Noguchi T, Baba T, Miyazaki S, Nonogi H (1999) Angiotensin-converting enzyme inhibition restores hepatocyte growth factor production in patients with congestive heart failure. Hypertension 33(6):1374–1378

    Article  CAS  Google Scholar 

  • Yoshiji H, Kuriyama S, Kawata M, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Fukui H (2001) The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: possible role of the vascular endothelial growth factor. Clin Cancer Res 7(4):1073–1078

    CAS  Google Scholar 

  • Yoshiji H, Noguchi R, Ikenaka Y, Kitade M, Kaji K, Tsujimoto T, Uemura M, Fukui H (2007) Renin-angiotensin system inhibitors as therapeutic alternatives in the treatment of chronic liver diseases. Curr Med Chem 14(26):2749–2754

    Article  CAS  Google Scholar 

  • Yoshiji H, Noguchi R, Toyohara M, Ikenaka Y, Kitade M, Kaji K, Yamazaki M, Yamao J, Mitoro A, Sawai M et al (2009) Combination of vitamin K2 and angiotensin-converting enzyme inhibitor ameliorates cumulative recurrence of hepatocellular carcinoma. J Hepatol 51(2):315–321

    Article  CAS  Google Scholar 

  • You H, Ding W, Dang H, Jiang Y, Rountree CB (2011) c-Met represents a potential therapeutic target for personalized treatment in hepatocellular carcinoma. Hepatology 54(3):879–889

    Article  CAS  Google Scholar 

  • Yu J, Chen GG, Lai PBS (2021) Targeting hepatocyte growth factor/c-mesenchymal-epithelial transition factor axis in hepatocellular carcinoma: rationale and therapeutic strategies. Med Res Rev 41(1):507–524

    Article  CAS  Google Scholar 

  • Zhang ZY, Fu SL, Xu SQ, Zhou X, Liu XS, Xu YJ, Zhao JP, Wei S (2015) By downregulating Ku80, hsa-miR-526b suppresses non-small cell lung cancer. Oncotarget 6(3):1462–1477

    Article  Google Scholar 

  • Zhang H, Feng Q, Chen WD, Wang YD (2018) HGF/c-MET: A. Promising Therapeutic Target in the Digestive System Cancers. Int j Mol Sci. https://doi.org/10.3390/ijms19113295

    Article  Google Scholar 

  • Zhang W, Mao S, Shi D, Zhang J, Zhang Z, Guo Y, Wu Y, Wang R, Wang L, Huang Y et al (2019) MicroRNA-153 decreases tryptophan catabolism and inhibits angiogenesis in bladder cancer by targeting indoleamine 2,3-dioxygenase 1. Front Oncol 9:619

    Article  Google Scholar 

  • Zhao W, Cui Y, Liu L, Qi X, Liu J, Ma S, Hu X, Zhang Z, Wang Y, Li H et al (2020) Splicing factor derived circular RNA circUHRF1 accelerates oral squamous cell carcinoma tumorigenesis via feedback loop. Cell Death Differ 27(3):919–933

    Article  CAS  Google Scholar 

  • Zhuang PH, Xu L, Gao L, Lu W, Ruan LT, Yang J (2017) Correlations of microvascular blood flow of contrast-enhanced ultrasound and HGF/c-Met signaling pathway with clinicopathological features and prognosis of patients with hepatocellular carcinoma. Onco Targets Ther 10:847–857

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

YL was responsible for drafting the manuscript. YL, XX and JW contributed to the analysis and interpretation of data. YL, YW and YY contributed in the data collection. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanhui Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

Written informed consent was obtained from patients with approval by the Institutional Review Board in The Second Hospital of Jilin University.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xiao, X., Wang, J. et al. Silencing CircEIF3I/miR-526b-5p Axis Epigenetically Targets HGF/c-Met Signal to Hinder the Malignant Growth, Metastasis and Angiogenesis of Hepatocellular Carcinoma. Biochem Genet 61, 48–68 (2023). https://doi.org/10.1007/s10528-022-10239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-022-10239-y

Keywords

Navigation