Skip to main content
Log in

Structural and Functional Annotation of Napin-Like Protein from Momordica charantia to Explore its Medicinal Importance

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Seed storage proteins not just provide essential nutritional ingredients for growth of seedlings but also have their potential role in defense mechanisms of plants. Napin is a seed storage protein and belongs to 2S albumin family. Napin and napin-like protein have many biological defensive activities including antifungal, antimicrobial, trypsin inhibitor, and also act as antagonist of calmodulin. Napin protein possesses various isoforms with different biological activities. In this study, the protein sequence of napin from Momordica charantia was retrieved from GenPept database for characterization. A complete annotation of napin including its physicochemical properties was done. Three dimensional (3D) modeling and interactions of napin-like protein with other proteins were also predicted using various bioinformatics tools. A phylogram of napin-like protein from M. charantia with its homologs was also reconstructed to reveal its evolutionary relationships with napins and other 2S albumin proteins from various plants. The study has revealed the structural characterization, biological interactions, and evolutionary background which will play crucial role in exploring the medicinal and biological potentials of napin-like protein from M. charantia as well as worth of napin and napin-like protein has been disclosed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afzal G, Mustafa G, Mushtaq S, Jamil A (2020) DNA barcodes of Southeast Asian spiders of wheat agro-ecosystem. Pak J Zool 52:1433–1441

    CAS  Google Scholar 

  • Agizzio AP, Carvalho AO, Suzanna de Fátima FR, Machado OL, Alves EW, Okorokov LA, Gomes VM (2003) A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum. Arch Biochem Biophys 416:188–195

    CAS  PubMed  Google Scholar 

  • Akbari A, Wu J (2015) An integrated method of isolating napin and cruciferin from defatted canola meal. LWT-Food Sci Technol 64:308–315

    CAS  Google Scholar 

  • Arif R, Ahmed S, Mustafa G (2020) In silico study to reveal annotation and significant interactions of human defensin with its isoforms and their phylogeny. Indian J Pharm Sci 82:465–471

    CAS  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Souza Cândido EM, Pinto FS, Pelegrini PB, Lima TB, Silva ON, Pogue R, Rossi-de-Sá MF, Franco OL (2011) Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. FASEB J 25:3290–3305

    Google Scholar 

  • Douliez JP, Michon T, Elmorjani K, Marion D (2000) Mini review: structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cer Sci 32:1–20

    CAS  Google Scholar 

  • El Tahchy A, Petrie JR, Shrestha P, Vanhercke T, Singh SP (2015) Expression of mouse MGAT in Arabidopsis results in increased lipid accumulation in seeds. Fron Plant Sci 6:1180

    Google Scholar 

  • Finkina EI, Melnikova DN, Bogdanov IV (2016) Lipid transfer proteins as components of the plant innate immune system: structure, functions, and applications. Acta Nature 8:47–61

    CAS  Google Scholar 

  • Finkina IE, Melnikova ND, Bogdanov IV, Ovchinnikova TV (2017) Plant pathogenesis-related proteins PR-10 and PR-14 as components of innate immunity system and ubiquitous allergens. Curr Med Chem 24:1772–1787

    CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Google Scholar 

  • Höglund AS, Rödin J, Larsson E, Rask L (1992) Distribution of napin and cruciferin in developing rape seed embryos. Plant Physiol 98:509–515

    PubMed  PubMed Central  Google Scholar 

  • Hu Y, Wu G, Cao Y, Wu Y, Xiao L, Li X, Lu C (2009) Breeding response of transcript profiling in developing seeds of Brassica napus. BMC Mol Biol 10:49

    PubMed  PubMed Central  Google Scholar 

  • Jabbir F, Irfan M, Mustafa G, Ahmad HI, Afzal G (2019) Bioinformatics approaches to explore the phylogeny and role of Brca1 in breast cancer. Crit Rev Eukaryot Gene Expr 29:551–564

    PubMed  Google Scholar 

  • Johnson LS, Eddy SR, Portugaly E (2010) Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinform 11:1–8

    Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Ann Rev Plant Biol 47:627–654

    CAS  Google Scholar 

  • Kawade K, Masuda K (2009) Transcriptional control of two ribosome-inactivating protein genes expressed in spinach (Spinacia oleracea) embryos. Plant Physiol Biochem 47:327–334

    CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Hua W, Yang HL, Zhan GM, Li RJ, Deng LB, Wang XF, Liu GH, Wang HZ (2012) The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot 63:3727–3740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes JL, Valadares SNF, Moraes DI, Rosa JC, Araujo HSS, Beltramini LM (2009) Physico-chemical and antifungal properties of protease inhibitors from Acacia plumosa. Phytochem 70:871–879

    CAS  Google Scholar 

  • Marambe P, Wanasundara J (2012) Seed storage proteins as sources of bioactive peptides. Bioactive molecules in plant foods. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Meneguetti BT, Machado LDS, Oshiro KG, Nogueira ML, Carvalho CM, Franco OL (2017) Antimicrobial peptides from fruits and their potential use as biotechnological tools—a review and outlook. Front Microbiol 7:2136

    PubMed  PubMed Central  Google Scholar 

  • Mészáros B, Tompa P, Simon I, Dosztányi Z (2007) Molecular principles of the interactions of disordered proteins. J Mol Biol 372:549–561

    PubMed  Google Scholar 

  • Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer EL, Tosatto SC, Paladin L, Raj S, Richardson LJ, Finn RD (2021) Pfam: The protein families database in 2021. Nucleic Acids Res 49(D1):D412–D419

    CAS  PubMed  Google Scholar 

  • Mitra P, McIntosh T, Wanasundara J (2013) Unique functionalities of napin protein of canola: a comparative study. Proceedings of Canadian society of bioengineering conference, Saskatoon, Canada

  • Mönke G, Altschmied L, Tewes A, Reidt W, Mock HP, Bäumlein H, Conrad U (2004) Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA. Planta 219:158–166

    PubMed  Google Scholar 

  • Munir A, Iqbal S, Khaliq B, Saeed Q, Hussain S, Shah KH, Ahmad F, Mehmood S, Ali Z, Munawar A, Saeed MQ (2019) In silico studies and functional characterization of a napin protein from seeds of Brassica juncea. Int J Agri Biol 22:1655–1662

    Google Scholar 

  • Mushtaq A, Ansari TM, Mustafa G, Shad MA, Cruz-Reyes J, Jamil A (2020) Isolation and characterization of nprB, a novel protease from Streptomyces thermovulgaris. Pak J Pharm Sci 33:2361–2369

    PubMed  Google Scholar 

  • Mustafa GM, Iqbal J, Hassan M, Jamil A (2017) Bioinformatics characterization of growth differentiation factor 11 of Oryctolagus cuniculus. J Chem Soc Pak 39:1089

    CAS  Google Scholar 

  • Mustafa G, Mahrosh HS, Arif R (2021a) In silico characterization of growth differentiation factors as inhibitors of TNF-alpha and IL-6 in immune-mediated inflammatory disease rheumatoid arthritis. BioMed Res Int. https://doi.org/10.1155/2021/5538535

    Article  PubMed  PubMed Central  Google Scholar 

  • Mustafa G, Mahrosh HS, Arif R (2021b) Sequence and structural characterization of toll-like receptor 6 from human and related species. BioMed Res Int. https://doi.org/10.1155/2021/5545183

    Article  PubMed  PubMed Central  Google Scholar 

  • Naim F, Shrestha P, Singh SP, Waterhouse PM, Wood CC (2016) Stable expression of silencing-suppressor protein enhances the performance and longevity of an engineered metabolic pathway. Plant Biotech J 14:1418–1426

    CAS  Google Scholar 

  • Nair DN, Singh V, Yamaguchi Y, Singh DD (2012) Jatropha curcas hemagglutinin is similar to a 2S albumin allergen from the same source and has unique sugar affinities. Planta 236:1499–1505

    CAS  PubMed  Google Scholar 

  • Ngai PHK, Ng TB (2004) A napin-like polypeptide from dwarf Chinese white cabbage seeds with translation-inhibitory, trypsin-inhibitory, and antibacterial activities. Peptides 25:171–176

    CAS  PubMed  Google Scholar 

  • Oldach KH, Becker D, Lorz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant Microb Interact 14:832–838

    CAS  Google Scholar 

  • Parthibane V, Iyappan R, Vijayakumar A, Venkateshwari V, Rajasekharan R (2012) Serine/threonine/tyrosine protein kinase phosphorylates oleosin, a regulator of lipid metabolic functions. Plant Physiol 159:95–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perera SP, McIntosh TC, Wanasundara JP (2016) Structural properties of cruciferin and napin of Brassica napus (canola) show distinct responses to changes in pH and temperature. Plants 5:36

    PubMed Central  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    CAS  PubMed  Google Scholar 

  • Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46:W200–W204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman M, Browne JJ, Van Crugten J, Hasan M, Liu L, Barkla BJ (2020) In silico, molecular docking and in vitro antimicrobial activity of the major rapeseed seed storage proteins. Front Pharmacol 11:1340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rico M, Bruix M, González C, Monsalve RI, Rodríguez R (1996) 1H NMR assignment and global fold of napin Bnlb, a representative 2S albumin seed protein. Biochem 35:15672–15682

    CAS  Google Scholar 

  • Schatzki J, Ecke W, Becker HC, Möllers C (2014) Mapping of QTL for the seed storage proteins cruciferin and napin in a winter oilseed rape doubled haploid population and their inheritance in relation to other seed traits. Theo App Gene 127:1213–1222

    CAS  Google Scholar 

  • Schwartz JM, Solé V, Guéguen J, Ropers MH, Riaublanc A, Anton M (2015) Partial replacement of β-casein by napin, a rapeseed protein, as ingredient for processed foods: thermoreversible aggregation. LWT-Food Sci Technol 63:562–568

    CAS  Google Scholar 

  • Siegler H, Valerius O, Ischebeck T, Popko J, Tourasse NJ, Vallon O, Khozin-Goldberg I, Braus GH, Feussner I (2017) Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa. BMC Plant Biol 17:98

    PubMed  PubMed Central  Google Scholar 

  • Sohrabi M, Zebarjadi A, Najaphy A, Kahrizi D (2015) Isolation and sequence analysis of napin seed specific promoter from Iranian Rapeseed (Brassica napus L.). Gene 563:160–164

    CAS  PubMed  Google Scholar 

  • Szklarczyk D, Santos A, Von Mering C, Jensen LJ, Bork P, Kuhn M (2016) STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44(D1):D380–D384

    CAS  PubMed  Google Scholar 

  • Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ (2019) STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomar PPS, Chaudhary NS, Mishra P, Gahloth D, Patel GK, Selvakumar P, Kumar P, Sharma AK (2014) Purification, characterisation and cloning of a 2S albumin with DNase, RNase and antifungal activities from Putranjiva roxburghii. Appl Biochem Biotechnol 174:471–482

    CAS  PubMed  Google Scholar 

  • Vashishta A, Sahu T, Sharma A, Choudhary SK, Dixit A (2006) In vitro refolded napin-like protein of Momordica charantia expressed in Escherichia coli displays properties of native napin. Biochim Biophys Acta (BBA)—Proteins Proteom 1764:847–855

    CAS  Google Scholar 

  • Wanasundara JP, McIntosh TC, Perera SP, Withana-Gamage TS, Mitra P (2016) Canola/rapeseed protein-functionality and nutrition. OCL 23:407

    Google Scholar 

  • Wu J, Muir AD (2008) Comparative structural, emulsifying, and biological properties of 2 major canola proteins, cruciferin and napin. J Food Sci 73:210–216

    Google Scholar 

  • Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T, Hamp T, Honigschmid P, Schafferhans A, Roos M, Bernhofer M, Richter L (2014) PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42:W337–W343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. Evolving genes and proteins. Elsevier, Amsterdam, pp 97–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Mustafa.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, R., Zia, M.A. & Mustafa, G. Structural and Functional Annotation of Napin-Like Protein from Momordica charantia to Explore its Medicinal Importance. Biochem Genet 60, 415–432 (2022). https://doi.org/10.1007/s10528-021-10113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-021-10113-3

Keywords

Navigation