Identification and Expression Analysis of miR160 and Their Target Genes in Cucumber

Abstract

miR160 plays a crucial role in various biological processes by regulating their target gene auxin response factor (ARF) in plants. However, little is known about miR160 and ARF in cucumber fruit expansion. Here, 4 Csa-MIR160 family members and 17 CsARFs were identified through a genome-wide search. Csa-miR160 showed a closer relationship with those in melon. Phylogenetic analysis revealed that CsARFs were divided into four classes and most of CsARFs presented a closer evolutionary relationship with those from tomato. Putative cis-elements analysis predicted that Csa-MIR160 and CsARFs were involved in light, phytohormone and stress response, which proved that they might take part in light, phytohormone and stress signaling pathway by the miR160-ARF module. In addition, CsARF5, CsARF11, CsARF13 and CsARF14 were predicted as the target genes of Csa-miR160. qRT-PCR revealed that Csa-miR160 and their target gene CsARFs were differentially expressed in differential cucumber tissues and developmental stages. Csa-miR160d was only expressed in the expanded cucumber fruit. CsARF5, CsARF11 and CsARF13 exhibited the lower expression in the expanded fruit than those in the ovary, while, CsARF14 showed the reverse trend. Our results suggested that Csa-miR160d might play a crucial role in cucumber fruit expansion by negatively targeting CsARF5, CsARF11 and CsARF13. This is the first genome-wide analysis of miR160 in cucumber. These findings provide useful information and resources for further studying the role of miR160 and ARF in cucumber fruit expansion.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ando K, Carr KM, Grumet R (2012) Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genom 13:518. https://doi.org/10.1186/1471-2164-13-518

    CAS  Article  Google Scholar 

  2. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Gene Ontol Consort Nat Genet 25:25–29. https://doi.org/10.1038/75556

    CAS  Article  Google Scholar 

  3. Bai Y, Wang W, Dong T, Guan L, Su Z, Jia H, Fang J, Wang C (2020) vvi-miR160s in mediating VvARF18 response to gibberellin regulation of grape seed development. Scientia Agricultura Sinica 53:1890–1903. https://doi.org/10.3864/j.issn.0578-1752.2020.09.015 (in Chinese)

    Article  Google Scholar 

  4. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: Tools for Motif Discovery and Searching. Nucleic Acids Res 37:W202-208. https://doi.org/10.1093/nar/gkp335

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bellaousov S, Reuter JS, Seetin MG, Mathews DH (2013) RNAstructure: web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res 41:W471–W474. https://doi.org/10.1093/nar/gkt290

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boonkorkaew P, Hikosaka S, Sugiyama N (2008) Effect of pollination on cell division, cell enlargement, and endogenous hormones in fruit development in a gynoecious cucumber. Sci Hortic-Amsterdam 116:1–7. https://doi.org/10.1016/j.scienta.2007.10.027

    CAS  Article  Google Scholar 

  7. Bustos-Sanmamed P, Mao G, Deng Y, Eléouët M, Khan GA, Bazin J, Turner M, Subramanian S, Yu O, Crespi M, Lelandais-Brière C (2013) Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. Funct Plant Biol 40:1208–1220. https://doi.org/10.1071/FP13123

    CAS  Article  PubMed  Google Scholar 

  8. Chen F, Mackey AJ, Vermunt JK, Roos DS (2007) Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS ONE 2:e383. https://doi.org/10.1371/journal.pone.0000383

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Chen C, Zeng Z, Liu Z, Xia R (2018) Small RNAs, emerging regulators critical for the development of horticultural traits. Hortic Res 5:63

    Article  Google Scholar 

  10. Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020a) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

    CAS  Article  Google Scholar 

  11. Chen GW, Yue YZ, Li L, Li YL, Li HY, Ding WJ, Shi TT, Yang XL, Wang LG (2020b) Genome-wide identification of the auxin response factor (ARF) gene family and their expression analysis during flower development of Osmanthus fragrans. Forests. https://doi.org/10.3390/f11020245

    Article  Google Scholar 

  12. Cui L, Li J, Zhang T, Guo Q, Xu J, Lou Q, Chen J (2014a) Identification and Expression Analysis of D-type Cyclin Genes in Early Developing Fruit of Cucumber (Cucumis sativus L.). Plant Mol Biol Rep 32:209–218. https://doi.org/10.1007/s11105-013-0637-5

    CAS  Article  Google Scholar 

  13. Cui L, Zhang T, Li J, Lou Q, Chen J (2014b) Cloning and expression analysis of Cs-TIR1/AFB2: the fruit development-related genes of cucumber (Cucumis sativus L.). Acta Physiol Plant 36:139–149. https://doi.org/10.1007/s11738-013-1394-7

    CAS  Article  Google Scholar 

  14. da Huang W, Sherman BT, Lempicki RA (2009a) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13. https://doi.org/10.1093/nar/gkn923

    CAS  Article  Google Scholar 

  15. da Huang W, Sherman BT, Lempicki RA (2009b) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

    CAS  Article  Google Scholar 

  16. Damodharan S, Zhao D, Arazi T (2016) A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. Plant J 86:458–471. https://doi.org/10.1111/tpj.13127

    CAS  Article  PubMed  Google Scholar 

  17. Damodharan S, Corem S, Gupta SK, Arazi T (2018) Tuning of SlARF10A dosage by sly-miR160a is critical for auxin-mediated compound leaf and flower development. Plant J 96:855–868. https://doi.org/10.1111/tpj.14073

    CAS  Article  PubMed  Google Scholar 

  18. de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009) The Solanum lycopersicum auxin response factor7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57:160–170. https://doi.org/10.1111/j.1365-313X.2008.03671.x

    CAS  Article  PubMed  Google Scholar 

  19. Diao D, Hu X, Guan D, Wang W, Yang H, Liu Y (2020) Genome-wide identification of the ARF (auxin response factor) gene family in peach and their expression analysis. Mol Biol Rep 47:4331–4344. https://doi.org/10.1007/s11033-020-05525-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Die JV, Gil J, Millan T (2018) Genome-wide identification of the auxin response factor gene family in Cicer arietinum. BMC Genomics. https://doi.org/10.1186/s12864-018-4695-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H, Yan A, Mueller LA (2015) The Sol Genomics Network (SGN)–from genotype to phenotype to breeding. Nucleic Acids Res 43:D1036–D1041. https://doi.org/10.1093/nar/gku1195

    CAS  Article  PubMed  Google Scholar 

  22. Ferreira e Silva GF, Silva EM, Azevedo Mda S, Guivin MA, Ramiro DA, Figueiredo CR, Carrer H, Peres LE, Nogueira FT (2014) microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J 78:604–618. https://doi.org/10.1111/tpj.12493

    CAS  Article  PubMed  Google Scholar 

  23. Food and Agriculture Organization of the United Nations [database on the Internet] (2020) http://www.fao.org/faostat/. Accessed on 25 August 2020

  24. Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59:2299–2308. https://doi.org/10.1093/jxb/ern093

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Garcia-Hernandez M, Berardini TZ, Chen G, Crist D, Doyle A, Huala E, Knee E, Lambrecht M, Miller N, Mueller LA, Mundodi S, Reiser L, Rhee SY, Scholl R, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2002) TAIR: a resource for integrated Arabidopsis data. Funct Integr Genomics 2:239–253. https://doi.org/10.1007/s10142-002-0077-z

    CAS  Article  PubMed  Google Scholar 

  26. Guo Z, Kuang Z, Wang Y, Zhao Y, Tao Y, Cheng C, Yang J, Lu X, Hao C, Wang T, Cao X, Wei J, Li L, Yang X (2019) PmiREN: a comprehensive encyclopedia of plant miRNAs. Nucleic Acids Res 48:D1114–D1121. https://doi.org/10.1093/nar/gkz894

    CAS  Article  PubMed Central  Google Scholar 

  27. Ha CV, Le DT, Nishiyama R, Watanabe Y, Sulieman S, Tran UT, Mochida K, Dong NV, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2013) The auxin response factor transcription factor family in soybean: genome-wide identification and expression analyses during development and water stress. DNA Res 20:511–524. https://doi.org/10.1093/dnares/dst027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    CAS  Article  Google Scholar 

  29. Hendelman A, Buxdorf K, Stav R, Kravchik M, Arazi T (2012) Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. Plant Mol Biol 78:561–576. https://doi.org/10.1007/s11103-012-9883-4

    CAS  Article  PubMed  Google Scholar 

  30. Howe KL, Contreras-Moreira B, De Silva N, Maslen G, Akanni W, Allen J, Alvarez-Jarreta J, Barba M, Bolser DM, Cambell L, Carbajo M, Chakiachvili M, Christensen M, Cummins C, Cuzick A, Davis P, Fexova S, Gall A, George N, Gil L, Gupta P, Hammond-Kosack KE, Haskell E, Hunt SE, Jaiswal P, Janacek SH, Kersey PJ, Langridge N, Maheswari U, Maurel T, McDowall MD, Moore B, Muffato M, Naamati G, Naithani S, Olson A, Papatheodorou I, Patricio M, Paulini M, Pedro H, Perry E, Preece J, Rosello M, Russell M, Sitnik V, Staines DM, Stein J, Tello-Ruiz MK, Trevanion SJ, Urban M, Wei S, Ware D, Williams G, Yates AD, Flicek P (2019) Ensembl Genomes 2020—enabling non-vertebrate genomic research. Nucleic Acids Res 48:D689–D695. https://doi.org/10.1093/nar/gkz890

    CAS  Article  PubMed Central  Google Scholar 

  31. Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2014) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297. https://doi.org/10.1093/bioinformatics/btu817

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jia X, Shen J, Liu H, Li F, Ding N, Gao C, Pattanaik S, Patra B, Li R, Yuan L (2015) Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta 242:283–293. https://doi.org/10.1007/s00425-015-2305-5

    CAS  Article  PubMed  Google Scholar 

  33. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. https://doi.org/10.1146/annurev.arplant.57.032905.105218

    CAS  Article  PubMed  Google Scholar 

  34. José Ripoll J, Bailey LJ, Mai QA, Wu SL, Hon CT, Chapman EJ, Ditta GS, Estelle M, Yanofsky MF (2015) microRNA regulation of fruit growth. Nat Plants 1:15036. https://doi.org/10.1038/nplants.2015.36

    CAS  Article  PubMed  Google Scholar 

  35. Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. https://doi.org/10.1016/j.jmb.2015.11.006

    CAS  Article  Google Scholar 

  36. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice (NY) 6:4. https://doi.org/10.1186/1939-8433-6-4

    Article  Google Scholar 

  37. Kim IS, Okubo H, Fujieda K (1992) Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.). Sci Hortic-Amsterdam 52:1–8. https://doi.org/10.1016/0304-4238(92)90002-T

    CAS  Article  Google Scholar 

  38. Kozomara A, Birgaoanu M, Griffiths-Jones S (2018) miRBase: from microRNA sequences to function. Nucleic Acids Res 47:D155–D162. https://doi.org/10.1093/nar/gky1141

    CAS  Article  PubMed Central  Google Scholar 

  39. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. https://doi.org/10.1093/nar/30.1.325

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Letunic I, Khedkar S, Bork P (2020) SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 49:D458–D460. https://doi.org/10.1093/nar/gkaa937

    CAS  Article  PubMed Central  Google Scholar 

  42. Li Q, Li H, Huang W, Xu Y, Zhou Q, Wang S, Ruan J, Huang S, Zhang Z (2019) A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). Gigascience. https://doi.org/10.1093/gigascience/giz072

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lin Y, Lai Z, Tian Q, Lin L, Lai R, Yang M, Zhang D, Chen Y, Zhang Z (2015) Endogenous target mimics down-regulate miR160 mediation of ARF10, -16, and -17 cleavage during somatic embryogenesis in Dimocarpus longan Lour. Front Plant Sci 6:956. https://doi.org/10.3389/fpls.2015.00956

    Article  PubMed  PubMed Central  Google Scholar 

  44. Liu SQ, Hu LF (2013) Genome-wide analysis of the auxin response factor gene family in cucumber. Genet Mol Res 12:4317–4331. https://doi.org/10.4238/2013.April.2.1

    CAS  Article  PubMed  Google Scholar 

  45. Liu P-P, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146. https://doi.org/10.1111/j.1365-313X.2007.03218.x

    CAS  Article  PubMed  Google Scholar 

  46. Liu S, Li JH, Wu J, Zhou KR, Zhou H, Yang JH, Qu LH (2015) StarScan: a web server for scanning small RNA targets from degradome sequencing data. Nucleic Acids Res 43:W480–W486. https://doi.org/10.1093/nar/gkv524

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Liu S, Zhang Y, Feng Q, Qin L, Pan C, Lamin-Samu AT, Lu G (2018) Tomato AUXIN RESPONSE FACTOR 5 regulates fruit set and development via the mediation of auxin and gibberellin signaling. Sci Rep 8:2971. https://doi.org/10.1038/s41598-018-21315-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    CAS  Article  Google Scholar 

  49. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ (2020a) Marchler-Bauer A (2020a) CDD/SPARCLE: the conserved domain database in. Nucleic Acids Res 48:D265-d268. https://doi.org/10.1093/nar/gkz991

    CAS  Article  PubMed  Google Scholar 

  50. Lu X, Liu W, Xiang C, Li X, Wang Q, Wang T, Liu Z, Zhang J, Gao L, Zhang W (2020b) Genome-wide characterization of GRAS family and their potential roles in cold tolerance of cucumber (L.). Int J Mol Sci. https://doi.org/10.3390/ijms21113857

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375. https://doi.org/10.1105/tpc.105.031716

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar Gustavo A, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A (2020) Pfam: the protein families database in. Nucleic Acids Res 49:D412–D419. https://doi.org/10.1093/nar/gkaa913

    CAS  Article  PubMed Central  Google Scholar 

  53. Ogawa Y, Aoki S (1977) Prominent promotion on the fruit growth in Cucumis sativus L. by gibberellin A4+7 and benzyladenine. Engei Gakkai Zasshi 46:245–249. https://doi.org/10.2503/jjshs.46.245

    CAS  Article  Google Scholar 

  54. Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463. https://doi.org/10.1105/tpc.104.028316

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263. https://doi.org/10.1038/nature01958

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Pinweha N, Asvarak T, Viboonjun U, Narangajavana J (2015) Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease. J Plant Physiol 174:26–35. https://doi.org/10.1016/j.jplph.2014.09.006

    CAS  Article  PubMed  Google Scholar 

  57. Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46:W200-w204. https://doi.org/10.1093/nar/gky448

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Roy SW, Penny D (2007) Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol Biol Evol 24:171–181. https://doi.org/10.1093/molbev/msl159

    CAS  Article  PubMed  Google Scholar 

  59. Sagar M, Chervin C, Mila I, Hao Y, Roustan JP, Benichou M, Gibon Y, Biais B, Maury P, Latché A, Pech JC, Bouzayen M, Zouine M (2013) SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol 161:1362–1374. https://doi.org/10.1104/pp.113.213843

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18:6097–6100. https://doi.org/10.1093/nar/18.20.6097

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Sheng H, Qin Z, Li W, Zhou X, Wu T, Xin M (2014) Genome-wide identification and expression analysis of auxin response factor (ARF) family in cucumber. Scientia Agricultura Sinica 47:1985–1994 (in Chinese)

    CAS  Google Scholar 

  62. Singh VK, Jain M (2015) Genome-wide survey and comprehensive expression profiling of Aux/IAA gene family in chickpea and soybean. Front Plant Sci 6:918. https://doi.org/10.3389/fpls.2015.00918

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sjut V, Bangerth F (1981) Effect of pollination or treatment with growth regulators on levels of extractable hormones in tomato ovaries and young fruits. Physiol Plant 53:76–78. https://doi.org/10.1111/j.1399-3054.1981.tb05047.x

    CAS  Article  Google Scholar 

  64. Sun Y, Luo W, Li Z, Xinzheng L (2017) Endogenous hormones levels and Csexpansin 10 gene expression in the fruit set and early development of cucumber. J Chem Soc Pakistan 39:59–64

    CAS  Google Scholar 

  65. Sun Y, Luo W, Chang H, Li Z, Zhou J, Li X, Zheng J, Hao M (2019) Identification of miRNAs and their target genes involved in cucumber fruit expansion using small RNA and degradome sequencing. Biomolecules 9:483. https://doi.org/10.3390/biom9090483

    CAS  Article  PubMed Central  Google Scholar 

  66. UniProt Consortium (2018) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049

    CAS  Article  Google Scholar 

  67. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S, Adhikari S, Arunachalam SP, Yu O, Subramanian S (2013) Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiol 162:2042–2055. https://doi.org/10.1104/pp.113.220699

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849. https://doi.org/10.1073/pnas.96.10.5844

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Wang H, Wang H (2015) The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol Plant 8:677–688. https://doi.org/10.1016/j.molp.2015.01.008

    CAS  Article  PubMed  Google Scholar 

  71. Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24. https://doi.org/10.1016/j.gene.2007.01.006

    CAS  Article  PubMed  Google Scholar 

  72. Wang SX, Shi FY, Dong XX, Li YX, Zhang ZH, Li H (2019) Genome-wide identification and expression analysis of auxin response factor (ARF) gene family in strawberry (Fragaria vesca). J Integr Agr 18:1587–1603. https://doi.org/10.1016/S2095-3119(19)62556-6

    CAS  Article  Google Scholar 

  73. Wen FL, Yue Y, He TF, Gao XM, Zhou ZS, Long XH (2020) Identification of miR390-TAS3-ARF pathway in response to salt stress in Helianthus tuberosus L. Gene 738:144460. https://doi.org/10.1016/j.gene.2020.144460

    CAS  Article  PubMed  Google Scholar 

  74. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552. https://doi.org/10.1385/1-59259-584-7:531

    CAS  Article  PubMed  Google Scholar 

  75. Wu J, Wang FY, Cheng L, Kong FL, Peng Z, Liu SY, Yu XL, Lu G (2011) Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Rep 30:2059–2073. https://doi.org/10.1007/s00299-011-1113-z

    CAS  Article  PubMed  Google Scholar 

  76. Wu B, Wang L, Pan G, Li T, Li X, Hao J (2020) Genome-wide characterization and expression analysis of the auxin response factor (ARF) gene family during melon (Cucumis melo L.) fruit development. Protoplasma 257:979–992. https://doi.org/10.1007/s00709-020-01484-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Xia R, Xu J, Meyers BC (2017) The emergence, evolution, and diversification of the miR390-TAS3-ARF pathway in land plants. Plant Cell 29:1232–1247. https://doi.org/10.1105/tpc.17.00185

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, Huang SW, Liu GQ (2013) Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. J Exp Bot 64:4541–4557. https://doi.org/10.1093/jxb/ert269

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Yoon EK, Yang JH, Lim J, Kim SH, Kim S-K, Lee WS (2010) Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38:1382–1391. https://doi.org/10.1093/nar/gkp1128

    CAS  Article  PubMed  Google Scholar 

  80. Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298. https://doi.org/10.1016/s0169-5347(03)00033-8

    Article  Google Scholar 

  81. Zhang X, Yan F, Tang Y, Yuan Y, Deng W, Li Z (2015) Auxin response gene SlARF3 plays multiple roles in tomato development and is involved in the formation of epidermal cells and trichomes. Plant Cell Physiol 56:2110–2124. https://doi.org/10.1093/pcp/pcv136

    CAS  Article  PubMed  Google Scholar 

  82. Zhang H, Yin L, Wang H, Wang G, Ma X, Li M, Wu H, Fu Q, Zhang Y, Yi H (2017) Genome-wide identification of Hami Melon miRNAs with putative roles during fruit development. PLoS ONE 12:e0180600. https://doi.org/10.1371/journal.pone.0180600

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Zhang W, Abdelrahman M, Jiu S, Guan L, Han J, Zheng T, Jia H, Song C, Fang J, Wang C (2019a) VvmiR160s/VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC Plant Biol 19:111. https://doi.org/10.1186/s12870-019-1719-9

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhang Y, Liu Z, Zhu X, Wang C, Li Q, Yuan W, Lou X (2019b) Identification of MiR160a and its target gene ARFs in peach fruit and the response analysis of IAA. Acta Horticulturae Sinica 46:613–622. https://doi.org/10.16420/j.issn.0513-353x.2018-0692 (in Chinese)

    Article  Google Scholar 

  85. Zhu QH, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495. https://doi.org/10.1093/jxb/erq295

    CAS  Article  PubMed  Google Scholar 

  86. Zouine M, Fu Y, Chateigner-Boutin AL, Mila I, Frasse P, Wang H, Audran C, Roustan JP, Bouzayen M (2014) Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing. PLoS ONE 9:e84203. https://doi.org/10.1371/journal.pone.0084203

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Key Research and Development Program of Henan Province (No. 202102110040; No. 212102110130) and the Key Science and Technology Program of Xinxiang City (No. GG2019013).

Author information

Affiliations

Authors

Contributions

YS conceived and designed the experiments. YL carried out the experiments, analyzed the data and wrote the manuscript. WL, HC, KM, ZZ and LL analyzed the data, prepared figures and tables. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Yongdong Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

This article does not contain any studies with human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Luo, W., Sun, Y. et al. Identification and Expression Analysis of miR160 and Their Target Genes in Cucumber. Biochem Genet (2021). https://doi.org/10.1007/s10528-021-10093-4

Download citation

Keywords

  • Cucumber (Cucumis sativus L.)
  • Fruit expansion
  • miR160
  • Auxin response factor (ARF)
  • Gene structure
  • qRT-PCR