Skip to main content

The Relationship Between Chemokine and Chemokine Receptor Genes Polymorphisms and Chronic Obstructive Pulmonary Disease Susceptibility in Tatar Population from Russia: A Case Control Study

Abstract

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease affecting primarily distal respiratory pathways and lung parenchyma. This study aimed to determine possible genetic association of chemokine and chemokine receptor genes polymorphisms with COPD in a Tatar population from Russia. SNPs of CCL20, CCR6, CXCL8, CXCR1, CXCR2, CCL8, CCL23, CCR2, and CX3CL1 genes and their gene–gene interactions were analyzed for association with COPD in cohort of 601 patients and 617 controls. As a result statistically significant associations with COPD in the study group under the biologically plausible assumption of additive genetic model were identified in CCL20 (rs6749704) (P = 0.00001, OR 1.55), CCR6 (rs3093024) (P = 0.0003, OR 0.74), CCL8 (rs3138035) (P = 0.0001, OR 0.67), CX3CL1 (rs170364) (P = 0.023, OR 1.21), CXCL8 (rs4073) (P = 0.007, OR 1.23), CXCR2 (rs2230054) (P = 0.0002, OR 1.32). Following SNPs CCL20 (rs6749704), CX3CL1 (rs170364), CCL8 (rs3138035), CXCL8 (rs4073), CXCR2 (rs2230054) showed statistically significant association with COPD only in smokers. The association of CCR6 (rs3093024) with COPD was confirmed both in smokers and in non-smokers. A relationship between smoking index and CCL20 (rs6749704) (P = 0.04), CCR6 (rs3093024) (P = 0.007), CCL8 (rs3138035) (P = 0.0043), and CX3CL1 (rs170364) (P = 0.04) was revealed. A significant genotype-dependent variation of Forced Vital Capacity was observed for CCL23 (rs854655) (P = 0.04). Forced Expiratory Volume in 1 s / Forced Vital Capacity ratio was affected by CCL23 (rs854655) (P = 0.05) and CXCR2 (rs1126579) (P = 0.02). Using the APSampler algorithm, we obtained nine gene–gene combinations that remained significantly associated with COPD; loci CCR2 (rs1799864) and CCL8 (rs3138035) were involved in the largest number of the combinations. Our results indicate that CCL20 (rs6749704), CCR6 (rs3093024), CCR2 (rs1799864), CCL8 (rs3138035), CXCL8 (rs4073), CXCR1 (rs2234671), CXCR2 (rs2230054), and CX3CL1 (rs170364) polymorphisms are strongly associated with COPD in Tatar population from Russia, alone and in combinations. For the first time combination of the corresponding SNPs were considered and as a result 8 SNP patterns were associated with increased risk of COPD

This is a preview of subscription content, access via your institution.

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ahn MH, Park BL, Lee SH et al (2011) A promoter SNP rs4073T>A in the common allele of the interleukin 8 gene is associated with the development of idiopathic pulmonary fibrosis via the IL-8 protein enhancing mode. Respir Res 12(1):73. https://doi.org/10.1186/1465-9921-12-73

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Apostolakis S, Spandidos D (2013) Chemokines and atherosclerosis: focus on the CX3CL1/CX3CR1 pathway. Acta Pharmacol Sin 34(10):1251–1256. https://doi.org/10.1038/aps.2013.92

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bai J, Song H, Cai C, Zhang M, Xu S, Tan J (2012) The association of monocyte chemotactic protein-1 and CC chemokine receptor 2 gene variants with chronic obstructive pulmonary disease. DNA Cell Biol 31(6):1058–1063. https://doi.org/10.1089/dna.2011.1520

    CAS  Article  PubMed  Google Scholar 

  4. Barnes PJ (2009) The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 41(6):631–638. https://doi.org/10.1165/rcmb.2009-0220TR

    CAS  Article  PubMed  Google Scholar 

  5. Barnes PJ (2016) Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 138(1):16–27. https://doi.org/10.1016/j.jaci.2016.05.011

    CAS  Article  PubMed  Google Scholar 

  6. Beeh KM, Kornmann O, Buhl R, Culpitt SV, Giembycz MA, Barnes PJ (2003) Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest 123(4):1240–1247. https://doi.org/10.1378/chest.123.4.1240

    CAS  Article  PubMed  Google Scholar 

  7. Bonaventura A, Montecucco F (2018) CCL23 is a promising biomarker of injury in patients with ischaemic stroke. J Intern Med 283(5):476–478. https://doi.org/10.1111/joim.12742

    CAS  Article  PubMed  Google Scholar 

  8. Bracke KR, D’hulst AI, Maes T et al (2006) Cigarette smoke-induced pulmonary inflammation and emphysema are attenuated in CCR6-deficient mice. J Immunol 177(7):4350–4359. https://doi.org/10.4049/jimmunol.177.7.4350

    CAS  Article  PubMed  Google Scholar 

  9. Cai G, Zhang B, Weng W, Shi G, Huang Z (2015) The associations between the MCP-1 -2518 A/G polymorphism and ischemic heart disease and ischemic stroke: a meta-analysis of 28 research studies involving 21,524 individuals. Mol Biol Rep 42(5):997–1012. https://doi.org/10.1007/s11033-014-3836-8

    CAS  Article  PubMed  Google Scholar 

  10. Charrad R, Kaabachi W, Rafrafi A, Berraies A, Hamzaoui K, Hamzaoui A (2017) IL-8 gene variants and expression in childhood asthma. Lung 195(6):749–757. https://doi.org/10.1007/s00408-017-0058-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Córdoba-Lanús E, Baz-Dávila R, Espinoza-Jiménez A et al (2015) IL-8 gene variants are associated with lung function decline and multidimensional BODE index in COPD patients but not with disease susceptibility: a validation study. COPD 12(1):55–61. https://doi.org/10.3109/15412555.2014.908831

    Article  PubMed  Google Scholar 

  12. Decramer M, Janssens W, Miravitlles M (2012) Chronic obstructive pulmonary disease. Lancet 379(9823):1341–1351. https://doi.org/10.1016/S0140-6736(11)60968-9

    Article  PubMed  PubMed Central  Google Scholar 

  13. Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29(6):313–326. https://doi.org/10.1089/jir.2008.0027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Donnelly LE, Barnes PJ (2006) Chemokine receptors as therapeutic targets in chronic obstructive pulmonary disease. Trends Pharmacol Sci 27(10):546–553. https://doi.org/10.1016/j.tips.2006.08.001

    CAS  Article  PubMed  Google Scholar 

  15. Eapen MS, Myers S, Walters EH, Sohal SS (2017) Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Rev Respir Med 11(10):827–839. https://doi.org/10.1080/17476348.2017.1360769

    CAS  Article  PubMed  Google Scholar 

  16. Faiz A, Weckmann M, Tasena H et al (2018) Profiling of healthy and asthmatic airway smooth muscle cells following interleukin-1β treatment: a novel role for CCL20 in chronic mucus hypersecretion. Eur Respir J 52(2):1800310. https://doi.org/10.1183/13993003.00310-2018

    CAS  Article  PubMed  Google Scholar 

  17. Favorov AV, Andreewski TV, Sudomoina MA, Favorova OO, Parmigiani G, Ochs MF (2005) A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans. Genetics 171(4):2113–2121. https://doi.org/10.1534/genetics.105.048090

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Furlan LL, Marson FA, Ribeiro JD, Bertuzzo CS, Salomão Junior JB, Souza DR (2016) IL8 gene as modifier of cystic fibrosis: unraveling the factors which influence clinical variability. Hum Genet 135(8):881–894. https://doi.org/10.1007/s00439-016-1684-4

    CAS  Article  PubMed  Google Scholar 

  19. Gauderman WJ (2002) Sample size requirements for matched case-control studies of gene-environment interaction. Stat Med 21(1):35–50. https://doi.org/10.1002/sim.973

    Article  PubMed  Google Scholar 

  20. Ha H, Debnath B, Neamati N (2017) Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics 7(6):1543–1588. https://doi.org/10.7150/thno.15625

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Hackett TL, Holloway R, Holgate ST, Warner JA (2008) Dynamics of pro-inflammatory and anti-inflammatory cytokine release during acute inflammation in chronic obstructive pulmonary disease: an ex vivo study. Respir Res 9(1):47. https://doi.org/10.1186/1465-9921-9-47

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Hao W, Li M, Zhang C, Zhang Y, Xue Y (2019) High Serum Fractalkine/CX3CL1 in patients with chronic obstructive pulmonary disease: relationship with emphysema severity and frequent exacerbation. Lung 197(1):29–35. https://doi.org/10.1007/s00408-018-0176-9

    CAS  Article  PubMed  Google Scholar 

  23. Henrot P, Prevel R, Berger P, Dupin I (2019) Chemokines in COPD: from implication to therapeutic use. Int J Mol Sci 20(11):2785. https://doi.org/10.3390/ijms20112785

    CAS  Article  PubMed Central  Google Scholar 

  24. Hoffmann-Vold AM, Weigt SS, Palchevskiy V et al (2018) Augmented concentrations of CX3CL1 are associated with interstitial lung disease in systemic sclerosis. PLoS ONE 13(11):e0206545. https://doi.org/10.1371/journal.pone.0206545

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Homey B, Dieu-Nosjean MC, Wiesenborn A et al (2000) Up-regulation of macrophage inflammatory protein-3 alpha/CCL20 and CC chemokine receptor 6 in psoriasis. J Immunol 164(12):6621–6632. https://doi.org/10.4049/jimmunol.164.12.6621

    CAS  Article  PubMed  Google Scholar 

  26. Hull J, Ackerman H, Isles K et al (2001) Unusual haplotypic structure of IL8, a susceptibility locus for a common respiratory virus. Am J Hum Genet 69(2):413–419. https://doi.org/10.1086/321291

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Hwang J, Son KN, Kim CW et al (2005) Human CC chemokine CCL23, a ligand for CCR1, induces endothelial cell migration and promotes angiogenesis. Cytokine 30(5):254–263. https://doi.org/10.1016/j.cyto.2005.01.018

    CAS  Article  PubMed  Google Scholar 

  28. Inui T, Watanabe M, Nakamoto K et al (2018) Bronchial epithelial cells produce CXCL1 in response to LPS and TNFα: A potential role in the pathogenesis of COPD. Exp Lung Res 44(7):323–331. https://doi.org/10.1080/01902148.2018.1520936

    CAS  Article  PubMed  Google Scholar 

  29. Jafarzadeh A, Bagherzadeh S, Ebrahimi HA et al (2014) Higher circulating levels of chemokine CCL20 in patients with multiple sclerosis: evaluation of the influences of chemokine gene polymorphism, gender, treatment and disease pattern. J Mol Neurosci 53(3):500–505. https://doi.org/10.1007/s12031-013-0214-2

    CAS  Article  PubMed  Google Scholar 

  30. Kim CS, Kang JH, Cho HR et al (2011) Potential involvement of CCL23 in atherosclerotic lesion formation/progression by the enhancement of chemotaxis, adhesion molecule expression, and MMP-2 release from monocytes. Inflamm Res 60(9):889–895. https://doi.org/10.1007/s00011-011-0350-5

    CAS  Article  PubMed  Google Scholar 

  31. Kochetova OV, Avzaletdinova DS, Morugova TV, Mustafina OE (2019) Chemokine gene polymorphisms association with increased risk of type 2 diabetes mellitus in Tatar ethnic group. Russia Mol Biol Rep 46(1):887–896. https://doi.org/10.1007/s11033-018-4544-6

    CAS  Article  PubMed  Google Scholar 

  32. Kochi Y, Okada Y, Suzuki A et al (2010) A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat Genet 42(6):515–519. https://doi.org/10.1038/ng.583

    CAS  Article  PubMed  Google Scholar 

  33. Korytina GF, Akhmadishina LZ, Aznabaeva YG, Kochetova OV, Zagidullin NS, Kzhyshkowska JG, Zagidullin SZ, Viktorova TV (2019) Associations of the NRF2/KEAP1 pathway and antioxidant defense gene polymorphisms with chronic obstructive pulmonary disease. Gene 692:102–112. https://doi.org/10.1016/j.gene.2018.12.061

    CAS  Article  PubMed  Google Scholar 

  34. Korytina GF, Akhmadishina LZ, Kochetova OV, Aznabaeva YG, Zagidullin SZ, Victorova TV (2019) The role of serum amyloid a1, adhesion molecules, chemokines, and chemokine receptors genes in chronic obstructive pulmonary disease. Russ J Genet. 55:105–113. https://doi.org/10.1134/S1022795418120050

    CAS  Article  Google Scholar 

  35. Kunisato T, Watanabe M, Inoue N et al (2018) Polymorphisms in Th17-related genes and the pathogenesis of autoimmune thyroid disease. Autoimmunity 51(7):360–369. https://doi.org/10.1080/08916934.2018.1534963

    CAS  Article  PubMed  Google Scholar 

  36. Lee JU, Cheong HS, Shim EY et al (2017) Gene profile of fibroblasts identify relation of CCL8 with idiopathic pulmonary fibrosis. Respir Res 18(1):3. https://doi.org/10.1186/s12931-016-0493-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Lee M, Lee Y, Song J, Lee J, Chang SY (2018) Tissue-specific role of CX3CR1 expressing immune cells and their relationships with human disease. Immune Netw 18(1):e5. https://doi.org/10.4110/in.2018.18.e5

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu SF, Wang CC, Fang WF, Chen YC, Lin MC (2010) MCP1 -2518 polymorphism and chronic obstructive pulmonary disease in Taiwanese men. Exp Lung Res 36(5):277–283. https://doi.org/10.3109/01902140903575989

    CAS  Article  PubMed  Google Scholar 

  39. Liu W, Jiang L, Bian C et al (2016) Role of CX3CL1 in diseases. Arch Immunol Ther Exp. 64(5):371–383. https://doi.org/10.1007/s00005-016-0395-9

    CAS  Article  Google Scholar 

  40. Ma H, Shu Y, Pan S et al (2011) Polymorphisms of key chemokine genes and survival of non-small cell lung cancer in Chinese. Lung Cancer 74(2):164–169. https://doi.org/10.1016/j.lungcan.2011.03.005

    Article  PubMed  Google Scholar 

  41. Matheson MC, Ellis JA, Raven J, Walters EH, Abramson MJ (2006) Association of IL8, CXCR2 and TNF-alpha polymorphisms and airway disease. J Hum Genet 51(3):196–203. https://doi.org/10.1007/s10038-005-0344-7

    CAS  Article  PubMed  Google Scholar 

  42. McComb JG, Ranganathan M, Liu XH et al (2008) CX3CL1 up-regulation is associated with recruitment of CX3CR1+ mononuclear phagocytes and T lymphocytes in the lungs during cigarette smoke-induced emphysema. Am J Pathol 173(4):949–961. https://doi.org/10.2353/ajpath.2008.071034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435. https://doi.org/10.1038/nature07201

    CAS  Article  PubMed  Google Scholar 

  44. Nardelli B, Tiffany HL, Bong GW et al (1999) Characterization of the signal transduction pathway activated in human monocytes and dendritic cells by MPIF-1, a specific ligand for CC chemokine receptor 1. J Immunol 162(1):435–444

    CAS  PubMed  Google Scholar 

  45. Poposki JA, Uzzaman A, Nagarkar DR et al (2011) Increased expression of the chemokine CCL23 in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy Clin Immunol 128(1):73-81.e4. https://doi.org/10.1016/j.jaci.2011.03.017

    CAS  Article  Google Scholar 

  46. Proost P, Wuyts A, VanDamme J (1996) Human monocyte chemotactic proteins-2 and -3: structural and functional comparison with MCP-1. J Leukoc Biol 59(1):67–74. https://doi.org/10.1002/jlb.59.1.67

    CAS  Article  PubMed  Google Scholar 

  47. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81(3):559–575. https://doi.org/10.1086/519795

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Ranasinghe R, Eri R (2018) Modulation of the CCR6-CCL20 Axis: a potential therapeutic target in inflammation and cancer. Medicina 54(5):88. https://doi.org/10.3390/medicina54050088

    Article  PubMed Central  Google Scholar 

  49. Russo RC, Garcia CC, Teixeira MM, Amaral FA (2014) The CXCL8/IL-8 chemokine family and its receptors in inflammatory diseases. Expert Rev Clin Immunol 10(5):593–619. https://doi.org/10.1586/1744666X.2014.894886

    CAS  Article  PubMed  Google Scholar 

  50. Ryan BM, Robles AI, McClary AC, Haznadar M et al (2015) Identification of a functional SNP in the 3’UTR of CXCR2 that is associated with reduced risk of lung cancer. Cancer Res 75(3):566–575. https://doi.org/10.1158/0008-5472.CAN-14-2101

    CAS  Article  PubMed  Google Scholar 

  51. Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14(5):409–426. https://doi.org/10.1016/s1359-6101(03)00049-2

    CAS  Article  PubMed  Google Scholar 

  52. Shaykhiev R, Crystal RG (2013) Innate immunity and chronic obstructive pulmonary disease: a mini-review. Gerontology 59(6):481–489. https://doi.org/10.1159/000354173

    CAS  Article  PubMed  Google Scholar 

  53. Struyf S, Proost P, Vandercappellen J et al (2009) Synergistic up-regulation of MCP-2/CCL8 activity is counteracted by chemokine cleavage, limiting its inflammatory and anti-tumoral effects. Eur J Immunol 39(3):843–857. https://doi.org/10.1002/eji.200838660

    CAS  Article  PubMed  Google Scholar 

  54. Sun D, Ouyang Y, Gu Y, Liu X (2016) Cigarette smoke-induced chronic obstructive pulmonary disease is attenuated by CCL20-blocker: a rat model. Croat Med J 57(4):363–370. https://doi.org/10.3325/cmj.2016.57.363

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Teng E, Leong KP, Li HH et al (2012) Analysis of a genome-wide association study-linked locus (CCR6) in Asian rheumatoid arthritis. DNA Cell Biol 31(4):607–610. https://doi.org/10.1089/dna.2011.1350

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Timasheva YR, Nasibullin TR, Tuktarova IA, Erdman VV, Mustafina OE (2018) CXCL13 polymorphism is associated with essential hypertension in Tatars from Russia. Mol Biol Rep 45(5):1557–1564. https://doi.org/10.1007/s11033-018-4257-x

    CAS  Article  PubMed  Google Scholar 

  57. Traves SL, Culpitt SV, Russell RE, Barnes PJ, Donnelly LE (2002) Increased levels of the chemokines GROalpha and MCP-1 in sputum samples from patients with COPD. Thorax 57(7):590–595. https://doi.org/10.1136/thorax.57.7.590

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Valverde-Villegas JM, de Medeiros RM, de Andrade KP et al (2017) Novel genetic associations and gene-gene interactions of chemokine receptor and chemokine genetic polymorphisms in HIV/AIDS. AIDS 31(9):235–1243. https://doi.org/10.1097/QAD.0000000000001491

    CAS  Article  Google Scholar 

  59. Ward LD, Kellis M (2012) HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40(D1):D930–D934. https://doi.org/10.1093/nar/gkr917

    CAS  Article  PubMed  Google Scholar 

  60. Zhang X, Feng X, Cai W et al (2015) Chemokine CX3CL1 and its receptor CX3CR1 are associated with human atherosclerotic lesion volnerability. Thromb Res 135(6):1147–1153. https://doi.org/10.1016/j.thromres.2015.03.020

    CAS  Article  PubMed  Google Scholar 

  61. Zhang Q, Lian Z, Zhang W et al (2019) Association between interleukin-8 gene -251 A/T polymorphism and the risk of coronary artery disease: A meta-analysis. Medicine 98(48):e17866. https://doi.org/10.1097/MD.0000000000017866

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Zlotnik A, Yoshie O (2000) Chemokines: A new classification system and their role in immunity. Immunity 12(2):21–127. https://doi.org/10.1016/s1074-7613(00)80165-x

    Article  Google Scholar 

  63. Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7(12):243. https://doi.org/10.1186/gb-2006-7-12-243

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the COPD patients, healthy volunteers and staff of the pulmonary department of Ufa City Hospitals No.21 (Ufa, Russia). This work was supported by the Russian Foundation for Basic Research Grants (No.18-015-00050), DNA samples for the study are taken from “Collections of human biological materials IBG UFIC RAS” supported by the Federal Agency for Scientific Organizations program for support the bioresource collections (Grant No. 007-030164/2). The work was performed using the equipment of the Centre for Collective Use «Biomika» and the unique KODINK research facility (Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences). Partial financial support for research by the Ministry of Higher Education and Science of Russian Federation (Grant No. AAAA-A21-121011990119-1) and Megagrant from the Government of Russian Federation (Grant No. 2020-220-08-2197).

Author information

Affiliations

Authors

Contributions

GK: conceptualization, funding acquisition, writing—original draft, writing—review & editing, methodology, project administration. LA: methodology, validation. YA: methodology, investigation, resources. OK: investigation, validation. TRN: Formal analysis, visualization. NSZ: methodology, formal analysis, visualization. SZZ: supervision, investigation, resources, writing—review & editing. TV: supervision, writing—review & editing. All authors critically commented and approved the manuscript.

Corresponding author

Correspondence to Gulnaz F. Korytina.

Ethics declarations

Conflict of interest

None of the authors has conflicts of interest to report with regard to this manuscript.

Ethical Approval

The study was approved by the Ethics Committee of Institute of Biochemistry and Genetics of Ufa Scientific Center of Russian Academy of Sciences (IBG USC RAS), Ufa, Russia (Ufa, Protocol No 17, December 7, 2010).

Consent to Participate

All procedures carried out in a study with the participation of people comply with the ethical standards of the institutional and/or national research ethics committee and the 1964 Helsinki Declaration and its subsequent changes or comparable standards of ethics. Informed voluntary consent was obtained from each of the participants in the study.

Consent for Publication

Written informed consent for the publication of any associated data were obtained from each of the participants in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korytina, G.F., Aznabaeva, Y.G., Akhmadishina, L.Z. et al. The Relationship Between Chemokine and Chemokine Receptor Genes Polymorphisms and Chronic Obstructive Pulmonary Disease Susceptibility in Tatar Population from Russia: A Case Control Study. Biochem Genet (2021). https://doi.org/10.1007/s10528-021-10087-2

Download citation

Keywords

  • Chronic obstructive pulmonary disease
  • Inflammation
  • Chemokines
  • Chemokines’ receptors
  • Gene–gene interactions
  • Gene-by-environment interactions