Skip to main content

Advertisement

Log in

Non-coding Single Nucleotide Variants of Renin and the (Pro)renin Receptor are Associated with Polygenic Diseases in a Bangladeshi Population

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Non-coding variants or single-nucleotide polymorphisms (SNPs) play pivotal roles in orchestrating pathogeneses of polygenic diseases, including hypertension (HTN) and diabetes. Renin–angiotensin system (RAS) components—renin and (pro)renin receptor [(P)RR]—maintain homeostasis of body fluids. Genetic variants of RAS components are associated with risk of HTN and type 2 diabetes (T2D) in different ethnic groups. We identified associations of SNPs within the renin and (P)RR genes with HTN, T2D, and T2D-associated hypertension in 911 unrelated Bangladeshi individuals. Five non-coding SNPs were involved in modulating regulatory elements in diverse cell types when tagged with other SNPs. rs61827960 was not associated with any disease; rs3730102 was associated with increased risk of HTN and T2D while under dominant model, it showed protective role against T2D-associated HTN. SNP rs11571079 was associated with increased risk of HTN and T2D-associated HTN and decreased risk of T2D, exerting a protective effect. Renin haplotypes GCA and GTG were related to increased risk of T2D and T2D-associated HTN, respectively. Heterogeneous linkage of genotypic and allelic frequencies of rs2968915 and rs3112298 of (P)RR was observed. The (P)RR haplotype GA was associated with increased risk of HTN and significantly decreased risk of T2D. These findings highlight important roles of non-coding variants of renin and (P)RR genes in the etiology of several polygenic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Afruza R, Islam LN, Banerjee S, Hassan MM, Suzuki F, Nabi AN (2014) Renin gene polymorphisms in Bangladeshi hypertensive population. J Genomics 2:45–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Akter S, Rahman MM, Abe SK, Sultana P (2014) Prevalence of diabetes and prediabetes and their risk factors among Bangladeshi adults: a nationwide survey. Bull World Health Organ 92:204-213A

    Article  PubMed  PubMed Central  Google Scholar 

  • Alwan A, Maclean DR, Riley LM, d’Espaignet ET, Mathers CD, Stevens GA et al (2010) Monitoring and surveillance of chronic non-communicable diseases: progress and capacity in high-burden countries. Lancet 376:1861–1868

    Article  PubMed  Google Scholar 

  • Amemiya S, Ishihara T, Higashida K, Kusano S, Ohyama K, Kato K (1990) Altered synthesis of renin in patients with insulin-dependent diabetes: plasma prorenin as a marker predicting the evolution of nephropathy. Diabetes Res Clin Pract 10:115–122

    Article  CAS  PubMed  Google Scholar 

  • American Diabetes Association (2016) 8. Cardiovascular disease and risk management. Diabetes Care. 39:S60–S71

  • Andraws R, Brown DL (2007) Effect of inhibition of the renin-angiotensin system on development of type 2 diabetes mellitus (meta-analysis of randomized trials). Am J Cardiol 99:1006–1012

    Article  CAS  PubMed  Google Scholar 

  • Burcklé CA, Jan Danser AH, Müller DN, Garrelds IM, Gasc JM, Popova E et al (2006) Elevated blood pressure and heart rate in human renin receptor transgenic rats. Hypertension 47:552–556

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary R, Singh B, Kumar M, Gakhar SK, Saini AK, Parmar VS et al (2015) Role of single-nucleotide polymorphisms in pharmacogenomics and their association with human diseases. Drug Metab Rev 47:281–290

    Article  CAS  PubMed  Google Scholar 

  • Cheung BMY (2010) The hypertension-diabetes continuum. J Cardiovasc Pharmacol 55:333–339

    Article  CAS  PubMed  Google Scholar 

  • Cheung BM, Li C (2012) Diabetes and hypertension: Is there a common metabolic pathway? Current Atherosclerosis Reports 14:160–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury AH, Zaman MM, Haque KM, Rouf MA, Shah AT, Nakayama T, Yokoyama T, Yoshiike N, Tanaka H (1998) Association of angiotensin converting enzyme (ACE) gene polymorphism with hypertension in a Bangladeshi population. Bangladesh Med Res Counc Bull 24:55–59

    CAS  PubMed  Google Scholar 

  • Chowdhury MAB, Uddin MJ, Haque MR, Ibrahimou B (2016) Hypertension among adults in Bangladesh: evidence from a national cross-sectional survey. BMC Cardiovasc Disord 16:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho NH, Kyoung Min Kim KM, Choi SH, Park KS, Jang HC, Kim SS, et al (2015) High blood pressure and its association with incident diabetes over 10 years in the Korean Genome and Epidemiology Study (KoGES). Diabetes Care 38:1333–1338

  • Cooper DN (2010) Functional intronic polymorphisms: buried treasure awaiting discovery within our genes. Hum Genomics 4:284–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Deinum J, Tarnow L, van Gool JM, de Bruin RA, Derkx FH, Schalekamp MA et al (1999) Plasma renin and prorenin and renin gene variation in patients with insulin-dependent diabetes mellitus and nephropathy. Nephrol Dial Transplant 14:1904–1991

    Article  CAS  PubMed  Google Scholar 

  • Dene H, Wang SM, Rapp JP (1989) Restriction fragment length polymorphisms for the renin gene in Dahl rats. J Hypertens 7:121–126

    Article  CAS  PubMed  Google Scholar 

  • Ellencweig AY, Grafstein O (1989) Eur Epidemiol 5:244–250

    Article  CAS  Google Scholar 

  • Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, Kajstura J (2001) Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50:2363–2375

    Article  CAS  PubMed  Google Scholar 

  • Franceschini N, Le TH (2014) Genetics of hypertension: discoveries from the bench to human populations. AJP Ren Physiol 306:F1–F11

    Article  CAS  Google Scholar 

  • Franken AA, Derkx FH, Man in’t Veld AJ, Hop WC, van Rens GH, Peperkamp E et al (1990) High plasma prorenin in diabetes mellitus and its correlation with some complications. J Clin Endocrinol Metab. 71:1008–15

    Article  CAS  PubMed  Google Scholar 

  • Frossard PM, Lestringant GG, Malloy MJ, Kane JP (1999) Human renin gene BglI dimorphism associated with hypertension in two independent populations. Clin Genet 56:428–433

    Article  CAS  PubMed  Google Scholar 

  • 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR. A global reference for human genetic variation. Nature. 2015; 526(7571):68–74.

  • Germain S, Philippe J, Fuchs S, Lengronne A, Corvol P, Pinet F (1997) Regulation of human renin secretion and gene transcription in Calu-6 cells. FEBS Lett 407:177–183

    Article  CAS  PubMed  Google Scholar 

  • Ghafar MTA (2018) Association of aldosterone synthase CYP11B2 (-344C/T) gene polymorphism with essential hypertension and left ventricular hypertrophy in the Egyptian population. Clin Exp Hypertens 41:779–786

    Article  PubMed  CAS  Google Scholar 

  • Ghafar MTA (2020a) An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids 163:108701

    Article  PubMed  CAS  Google Scholar 

  • Ghafar MTA (2020b) Aldosterone synthase gene (CYP11B2) polymorphisms and enhanced cardiovascular risk in chapter 2: the recent topics in genetic polymorphisms. In: Çalışkan M, Erol O, Öz GC (eds) IntechOpen.

  • Ghafar MTA, Shalaby KH, Okda HI, Rizk FH (2020) Association of ABCA1 (C69T) gene polymorphism with dyslipidemia and type 2 diabetes among the Egyptian population. Meta Gene 25:100714

    Article  Google Scholar 

  • Haga H, Yamada R, Ohnishi Y, Nakamura Y, Tanaka T (2002) Gene-based SNP discovery as part of the Japanese Millennium Genome Project: identification of 190,562 genetic variations in the human genome. J Hum Genet 47:605–610

    Article  CAS  PubMed  Google Scholar 

  • Hammer MF, Karafet TM, Park H, Omoto K, Harihara S, Stoneking M et al (2006) Dual origins of the Japanese: common ground for hunter-gatherer and farmer Y chromosomes. J Hum Genet 51:47–58

    Article  PubMed  Google Scholar 

  • Hase K, Kanda A, Hirose I, Noda K, Ishida S (2017) Systemic factors related to soluble (pro)renin receptor in plasma of patients with proliferative diabetic retinopathy. PLoS ONE 12:e0189696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayashi T, Tsumura K, Suematsu C, Endo G, Fujii S, Okada K (1999) High normal blood pressure, hypertension, and the risk of type 2 diabetes in Japanese men. Osaka Health Survey Diabetes Care 22:1683–1687

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Hashimoto M, Totsune K, Metoki H, Hara A, Satoh M et al (2011) Association of (pro)renin receptor gene polymorphisms with lacunar infarction and left ventricular hypertrophy in Japanese women: the Ohasama study. Hypertens Res 34:530–535

    Article  CAS  PubMed  Google Scholar 

  • Hrdlickova B, de Almeida RC, Borek Z, Withoff S (2014) Genetic variation in the non-coding genome: Involvement of micro-RNAs and long non-coding RNAs in disease. Biochim Biophys Acta - Mol Basis Dis 1842:1910–1922

    Article  CAS  Google Scholar 

  • Huda N, Hosen MI, Yasmin T, Sarkar PK, Hasan AKMM, Nabi AHMN (2018) Genetic variation of the transcription factor GATA3, not STAT4, is associated with the risk of type 2 diabetes in the Bangladeshi population. PLoS ONE 13:1–16

    Article  CAS  Google Scholar 

  • Ichihara A, Hayashi M, Kaneshiro Y, Suzuki F, Nakagawa T, Tada Y et al (2004) Inhibition of diabetic nephropathy by a decoy peptide corresponding to the ‘handle’ region for nonproteolytic activation of prorenin. J Clin Invest 114:1128–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyce-Tan SM, Zain SM, Abdul Sattar MZ, Abdullah NA (2016) Renin-Angiotensin system gene variants and type 2 diabetes mellitus: influence of angiotensinogen. J Diabetes Res 2016:2161376

    Article  PubMed  CAS  Google Scholar 

  • Kaneshiro Y, Ichihara A, Sakoda M, Takemitsu T, Nabi AH, Uddin MN et al (2007) Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats. J Am Soc Nephrol 18:1789–1795

    Article  CAS  PubMed  Google Scholar 

  • Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J (2005) Global burden of hypertension: analysis of worldwide data. Lancet 365:217–223

    Article  PubMed  Google Scholar 

  • Khalequzzaman M, Chiang C, Choudhury SR, Yatsuya H, Al-Mamun MA, Al-Shoaibi AAA et al (2017) Prevalence of non-communicable disease risk factors among poor shantytown residents in Dhaka, Bangladesh: a community-based cross-sectional survey. BMJ Open 7:e014710

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosachunhanun N, Hunt SC, Hopkins PN, Williams RR, Jeunemaitre X, Corvol P et al (2003) Genetic determinants of nonmodulating hypertension. Hypertension 42:901–908

    Article  CAS  PubMed  Google Scholar 

  • Kuhlemeier KV (1994) Epidemiology and dysphagia. Dysphagia 9:209–217

    Article  CAS  PubMed  Google Scholar 

  • Lavoie JL, Sigmund CD (2003) Minireview: Overview of the renin-angiotensin system: an endocrine and paracrine system. Endocrinology 144:2179–2183

    Article  CAS  PubMed  Google Scholar 

  • Levy D, DeStefano AL, Larson MG, Oonnell CJ, Lifton RP, Gavras H et al (2000) Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham heart study. Hypertension. 36:477–83

    Article  CAS  PubMed  Google Scholar 

  • Li MJ, Wang P, Liu X, Lim EL, Wang Z, Yeager M et al (2011) GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res 40:D1047–D1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo S, Shi C, Wang F, Wu Z (2016) Association between the Angiotensin-Converting Enzyme (ACE) genetic polymorphism and diabetic retinopathy-a meta-analysis comprising 10,168 subjects. Int J Environ Res Public Health 13:1142

    Article  PubMed Central  Google Scholar 

  • McCarthy MI, Hirschhorn JN (2008) Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet 17:R156–R165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meisinger C, Döring A, Heier M (2008) Blood pressure and risk of type 2 diabetes mellitus in men and women from the general population: the Monitoring Trends and Determinants on Cardiovascular Diseases/Cooperative Health Research in the Region of Augsburg Cohort Study. J Hypertens 26:1809–1815

    Article  CAS  PubMed  Google Scholar 

  • Miller JA (1999) Impact of hyperglycemia on the renin angiotensin system in early human type 1 diabetes mellitus. J Am Soc Nephrol 10:1778–1785

    Article  CAS  PubMed  Google Scholar 

  • Miller JA, Floras JS, Zinman B, Skorecki KL, Logan AG (1996) Effect of hyperglycaemia on arterial pressure, plasma renin activity and renal function in early diabetes. Clin Sci (Lond) 90:189–195

    Article  CAS  Google Scholar 

  • Montesanto A, Bonfigli AR, Crocco P, Garagnani P, De Luca M, Boemi M et al (2018) Genes associated with Type 2 Diabetes and vascular complications. Aging (Albany NY) 10:178–196

    Article  CAS  Google Scholar 

  • Monwarul Islam AKM, Majumder AAS (2012) Hypertension in Bangladesh: a review arsenicosis Bangladesh hypertension hypovitaminosis D. Indian Heart J 6403:319–323

    Article  Google Scholar 

  • Morshed M, Khan H, Akhteruzzaman S (2002) Association between angiotensin I-converting enzyme gene polymorphism and hypertension in selected individuals of the Bangladeshi population. BMB Reports 35:251–254

    Article  CAS  Google Scholar 

  • Mtiraoui N, Ezzidi I, Turki A, Chaieb M, Mahjoub T, Almawi WY (2011) Renin-angiotensin-aldosterone system genotypes and haplotypes affect the susceptibility to nephropathy in type 2 diabetes patients. J Renin Angiotensin Aldosterone Syst 12:572–580

    Article  CAS  PubMed  Google Scholar 

  • Ott C, Schneider MP, Delles C, Schlaich MP, Hilgers KF, Schmieder RE (2011) Association of (pro)renin receptor gene polymorphism with blood pressure in Caucasian men. Pharmacogenet Genomics 21:347–349

    Article  CAS  PubMed  Google Scholar 

  • Saha SK, Akther J, Huda N, Yasmin T, Alam MS, Hosen MI, Hasan AKMM, Nabi AHMN (2019) Genetic association study of C5178A and G10398A mitochondrial DNA variants with type 2 diabetes in Bangladeshi population. Meta Gene 1:23–31

    Article  Google Scholar 

  • Satofuka S, Ichihara A, Nagai N, Noda K, Ozawa Y, Fukamizu A et al (2009) (Pro)renin receptor-mediated signal transduction and tissue renin-angiotensin system contribute to diabetes-induced retinal inflammation. Diabetes 58:1625–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaid DJ, Sinnwell JP, Thibodeau SN (2005) Robust multipoint identical-by-descent mapping for affected relative pairs. Am J Hum Genet 76:128–138

    Article  CAS  PubMed  Google Scholar 

  • Scheen AJ (2004) Prevention of type 2 diabetes mellitus through inhibition of the Renin-Angiotensin system. Drugs 64:2537–2565

    Article  CAS  PubMed  Google Scholar 

  • Solé X, Guinó E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22:1928–1929

    Article  PubMed  CAS  Google Scholar 

  • Spät A, Hunyady L (2004) Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 84:489–539

    Article  PubMed  Google Scholar 

  • Stankovic AR, Fisher NDL, Hollenberg NK (2006) Prorenin and angiotensin-dependent renal vasoconstriction in type 1 and type 2 diabetes. J Am Soc Nephrol 17:3293–3299

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Williams JS, Pojoga L, Chamarthi B, Lasky-Su J, Raby BA et al (2011) Renin gene polymorphism: its relationship to hypertension, renin levels and vascular responses. J Renin Angiotensin Aldosterone Syst 12:564–571

    Article  CAS  PubMed  Google Scholar 

  • Tsimihodimos V, Gonzalez-Villalpando C, Meigs JB, Ferrannini E (2018) Hypertension and diabetes mellitus: coprediction and time trajectories. Hypertension 71:422–428

    Article  CAS  PubMed  Google Scholar 

  • Turner S, Armstrong LL, Bradford Y, Carlson CS, Crawford DC, Crenshaw AT, de Andrade M, Doheny KF, Haines JL, Hayes G, Jarvik G, Jiang L, Kullo IJ, Li R, Ling H, Manolio TA, Matsumoto M, McCarty CA, McDavid AN, Mirel DB, Paschall JE, Pugh EW, Rasmussen LV, Wilke RA, Zuvich RL, Ritchie MD (2011) Quality control procedures for genome-wide association studies. Curr Protoc Hum Genet. https://doi.org/10.1002/0471142905.hg0119s68

    Article  PubMed  PubMed Central  Google Scholar 

  • Velloso LA, Folli F, Sun XJ, White MF, Saad MJ, Kahn CR (1996) Cross-talk between the insulin and angiotensin signaling systems. PNAS 93:12490–12495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpe M, Battistoni A, Chin D, Rubattu S, Tocci G (2012) Renin as a biomarker of cardiovascular disease in clinical practice. Nutr Metab Cardiovasc Dis 22:312–317

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang JG (2018) Genome-wide association studies of hypertension and several other cardiovascular diseases. Pulse 6:169–186

  • Wang F, Fang Q, Yu N, Zhao D, Zhang Y, Wang J, Wang Q, Zhou X, Cao X, Fan X (2012) Association between genetic polymorphism of the angiotensin-converting enzyme and diabetic nephropathy: a meta-analysis comprising 26,580 subjects. J Renin Angiotensin Aldosterone Syst 13:161–174

    Article  CAS  PubMed  Google Scholar 

  • Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H et al (2013) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • World Health Organization (1999) Definition, Diagnosis and classification of diabetes mellitus and its complications: Report of a WHO Consultation. Part 1: Diagnosis and classification of diabetes mellitus. Geneve: World Health Organization, pp. 539–553.

  • World Heart Federation Roadmap to the Management and Control of Raised Blood Pressure provides guidance on achieving the target of a relative reduction of the prevalence of raised blood pressure by 25% by 2025: https://www.world-heart-federation.org/cvd-roadmaps/whf-global-roadmaps/hypertension/

  • Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, Yengo L, Lloyd-Jones LR, Sidorenko J, Wu Y, eQTLGen Consortium, McRae AF, Visscher PM, Zeng J, Yang J (2018) Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun 9(1):2941

  • Yang JK, Zhou JB, Xin Z, Zhao L, Yu M, Feng JP et al (2010) Interactions among related genes of renin-angiotensin system associated with type 2 diabetes. Diabetes Care 33:2271–2273

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was partially supported by a grant approved by the Ministry of Science and Technology (2017–2018), Government of the People’s Republic of Bangladesh and University Grants Commission (2017–2018), Bangladesh, and by the JSPS KAKENHI (Japan Society for Promotion of Science, KAKENHI), Grant No. 18KK0273. The authors express their heartfelt gratitude to Professor Dr Haseena Khan and Professor Dr Zeba Islam Seraj for allowing us to use their laboratory facilities when required.

Author information

Authors and Affiliations

Authors

Contributions

AHMNN conceived the idea. AHMNN and AE designed the experiments. JA conducted all the experiments in the laboratory of population genetics. MAR interviewed the patients and collected the samples. JA, TN, and SKS performed data analyses. MIH and AD performed the bioinformatics analyses and haplotype frequency analyses. JA, AHMNN, and FS wrote the manuscript. All authors approved submission of the final manuscript.

Corresponding author

Correspondence to A. H. M. Nurun Nabi.

Ethics declarations

Conflict of interest

The author(s) declare that there no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akther, J., Das, A., Rahman, M.A. et al. Non-coding Single Nucleotide Variants of Renin and the (Pro)renin Receptor are Associated with Polygenic Diseases in a Bangladeshi Population. Biochem Genet 59, 1116–1145 (2021). https://doi.org/10.1007/s10528-021-10049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-021-10049-8

Keywords

Navigation