Vitamin D and Genetic Susceptibility to Multiple Sclerosis

Abstract

Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system (CNS), resulting from the interaction among genetic, epigenetic, and environmental factors. Vitamin D is a secosteroid, and its circulating levels are influenced by environment and genetics. In the last decades, research data on the association between MS and vitamin D status led to hypothesize a possible role for hypovitaminosis D as a risk factor for MS. Some gene variants encoding proteins involved in vitamin D metabolism, transport, and function, which are responsible for vitamin D status alterations, have been related to MS susceptibility. This review explores the current literature on the influence of vitamin D-related genes in MS susceptibility, reporting all single-nucleotide polymorphisms (SNPs) investigated to date in 12 vitamin D pathway genes. Among all, the gene codifying vitamin D receptor (VDR) is the most studied. The association between VDR SNPs and MS risk has been reported by many Authors, with a few studies producing opposite results. Other vitamin D-related genes (including DHCR7/NADSYN1, CYP2R1, CYP27A1, CYP3A4, CYP27B1, CYP24A1, Megalin-DAB2-Cubilin, FGF-23, and Klotho) have been less investigated and achieved more conflicting evidence. Taken together, findings from the studies reviewed cannot clarify whether and to what extent vitamin D-related gene variants can influence MS risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig 4

References

  1. Abdollahzadeh R, Fard MS, Rahmani F, Moloudi K, Kalani BS, Azarnezhad A (2016) Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis: A case-control study. J Neurol Sci 367:148–51. https://doi.org/10.1016/j.jns.2016.05.053

    CAS  Article  PubMed  Google Scholar 

  2. Abdollahzadeh R, Moradi Pordanjani P, Rahmani F, Mashayekhi F, Azarnezhad A, Mansoori Y (2018) Association of VDR gene polymorphisms with risk of relapsing-remitting multiple sclerosis in an Iranian Kurdish population. Int J Neurosci 128(6):505–511. https://doi.org/10.1080/00207454.2017.1398158

    CAS  Article  PubMed  Google Scholar 

  3. Acheson ED, Bachrach CA, Wright FM (1960) Some comments on the relationship of the distribution of multiple sclerosis to latitude, solar radiation, and other variables. Acta Psychiatr Scand Suppl 5(147):132–47

    Article  Google Scholar 

  4. Agliardi C, Guerini FR, Saresella M, Caputo D, Leone MA, Zanzottera M, Bolognesi E, Marventano I, Barizzone N, Fasano ME, Al-Daghri N, Clerici M (2011) Vitamin D receptor (VDR) gene SNPs influence VDR expression and modulate protection from multiple sclerosis in HLA-DRB1*15-positive individuals. Brain Behav Immun 25(7):1460–7. https://doi.org/10.1016/j.bbi.2011.05.015

    CAS  Article  PubMed  Google Scholar 

  5. Agliardi C, Guerini FR, Zanzottera M, Bolognesi E, Costa AS, Clerici M (2017) Vitamin D-binding protein gene polymorphisms are not associated with MS risk in an Italian cohort. J Neuroimmunol 305:92–95. https://doi.org/10.1016/j.jneuroim.2017.02.009

    CAS  Article  PubMed  Google Scholar 

  6. Agnello L, Bellia C, Di Gangi M et al (2016) Utility of serum procalcitonin and C-reactive protein in severity assessment of community-acquired pneumonia in children. Clin Biochem 49(1–2):47–50. https://doi.org/10.1016/j.clinbiochem.2015.09.008

    CAS  Article  PubMed  Google Scholar 

  7. Agnello L, Bivona G, Lo Sasso B et al (2017) Galectin-3 in acute coronary syndrome. Clin Biochem 50(13–14):797–803. https://doi.org/10.1016/j.clinbiochem.2017.04.018

    CAS  Article  PubMed  Google Scholar 

  8. Agnello L, Bivona G, Novo G et al (2017) Heart-type fatty acid binding protein is a sensitive biomarker for early AMI detection in troponin negative patients: a pilot study. Scand J Clin Lab Invest 77(6):428–432. https://doi.org/10.1080/00365513.2017.1335880

    CAS  Article  PubMed  Google Scholar 

  9. Agnello L, Scazzone C, Lo Sasso B, Bellia C, Bivona G, Realmuto S, Brighina F, Schillaci R, Ragonese P, Salemi G, Ciaccio M (2017) VDBP, CYP27B1, and 25-Hydroxyvitamin D Gene Polymorphism Analyses in a Group of Sicilian Multiple Sclerosis Patients. Biochem Genet 55(2):183–192. https://doi.org/10.1007/s10528-016-9783-4

    CAS  Article  PubMed  Google Scholar 

  10. Agnello L, Scazzone C, Lo Sasso B, Ragonese P, Milano S, Salemi G, Ciaccio M (2018) CYP27A1, CYP24A1, and RXR-α polymorphisms, Vitamin D, and multiple sclerosis: a pilot study. J Mol Neurosci. 66(1):77–84. https://doi.org/10.1007/s12031-018-1152-9

    CAS  Article  PubMed  Google Scholar 

  11. Agnello L, Scazzone C, Ragonese P, Salemi G, Lo Sasso B, Schillaci R, Musso G, Bellia C, Ciaccio M (2016) Vitamin D receptor polymorphisms and 25-hydroxyvitamin D in a group of Sicilian multiple sclerosis patients. Neurol Sci 37(2):261–7. https://doi.org/10.1007/s10072-015-2401-0

    Article  PubMed  Google Scholar 

  12. Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K et al (2010) Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 19(13):2739–45. https://doi.org/10.1093/hmg/ddq155

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Al-Temaimi RA, Al-Enezi A, Al-Serri A, Alroughani R, Al-Mulla F (2015) The association of Vitamin D receptor polymorphisms with multiple sclerosis in a case-control study from Kuwait. PLoS One 10(11):e0142265. https://doi.org/10.1371/journal.pone.0142265

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Alloza I, Otaegui D, de Lapuente AL, Antigüedad A, Varadé J, Núñez C, Arroyo R, Urcelay E, Fernandez O, Leyva L, Fedetz M, Izquierdo G, Lucas M, Oliver-Martos B, Alcina A, Saiz A, Blanco Y, Comabella M, Montalban X, Olascoaga J, Matesanz F, Vandenbroeck K (2012) ANKRD55 and DHCR7 are novel multiple sclerosis risk loci. Genes Immun 13(3):253–7. https://doi.org/10.1038/gene.2011.81

    CAS  Article  PubMed  Google Scholar 

  15. Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene) (2009) Genome-wide association study identifies new multiple sclerosis susceptibility loci on chromosomes 12 and 20. Nat Genet 41(7):824–8. https://doi.org/10.1038/ng.396

    CAS  Article  Google Scholar 

  16. Ban M, Caillier S, Mero IL, Myhr KM, Celius EG, Aarseth J, Torkildsen Ø, Harbo HF, Oksenberg J, Hauser SL, Sawcer S, Compston A (2013) No evidence of association between mutant alleles of the CYP27B1 gene and multiple sclerosis. Ann Neurol 73(3):430–2. https://doi.org/10.1002/ana.23833

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Baranzini SE, Oksenberg JR (2017) The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet 33(12):960–970. https://doi.org/10.1016/j.tig.2017.09.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Becker KG (2004) The common variants/multiple disease hypothesis of common complex genetic disorders. Med Hypotheses 62(2):309–17

    CAS  Article  Google Scholar 

  19. Bellia C, Bivona G, Scazzone C et al (2007) Association between homocysteinemia and metabolic syndrome in patients with cardiovascular disease. Ther Clin Risk Manag 3(6):999–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bellia C, Zaninotto M, Cosma C, Agnello L, Lo Sasso B, Bivona G, Plebani M, Ciaccio M (2017) Definition of the upper reference limit of glycated albumin in blood donors from Italy. Clin Chem Lab Med 56(1):120–125. https://doi.org/10.1515/cclm-2017-0179

    CAS  Article  PubMed  Google Scholar 

  21. Ben-Selma W, Ben-Fredj N, Chebel S, Frih-Ayed M, Aouni M, Boukadida J (2015) Age- and gender-specific effects on VDR gene polymorphisms and risk of the development of multiple sclerosis in Tunisians: a preliminary study. Int J Immunogenet 42(3):174–81. https://doi.org/10.1111/iji.12197

    CAS  Article  PubMed  Google Scholar 

  22. Bermúdez-Morales VH, Fierros G, Lopez RL, Martínez-Nava G, Flores-Aldana M, Flores-Rivera J, Hernández-Girón C (2017) Vitamin D receptor gene polymorphisms are associated with multiple sclerosis in Mexican adults. J Neuroimmunol 306:20–24. https://doi.org/10.1016/j.jneuroim.2017.01.009

    CAS  Article  PubMed  Google Scholar 

  23. Berridge MJ (2015) Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun 460:53–71

    CAS  Article  Google Scholar 

  24. Bettencourt A, Boleixa D, Guimarães AL, Leal B, Carvalho C, Brás S, Samões R, Santos E, Costa PP, Silva B, da Silva AM (2017) The vitamin D receptor gene FokI polymorphism and multiple sclerosis in a Northern Portuguese population. J Neuroimmunol 309:34–37. https://doi.org/10.1016/j.jneuroim.2017.05.005

    CAS  Article  PubMed  Google Scholar 

  25. Bezzini D, Battaglia MA (2017) Multiple sclerosis epidemiology in Europe. Adv Exp Med Biol 958:141–159. https://doi.org/10.1007/978-3-319-47861-6_9

    CAS  Article  PubMed  Google Scholar 

  26. Bikle DD (2009) Extra renal synthesis of 1,25-dihydroxyvitamin D and its health implications. Clinic Rev Bone Miner Metab 7:114–125

    CAS  Article  Google Scholar 

  27. Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21(3):319–29. https://doi.org/10.1016/j.chembiol.2013.12.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Bivona G, Agnello L, Ciaccio M (2018) The immunological implication of the new vitamin D metabolism. Cent Eur J Immunol 43(3):331–334. https://doi.org/10.5114/ceji.2018.80053

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Bivona G, Agnello L, Lo Sasso B, Scazzone C, Butera D, Gambino CM, Iacolino G, Bellia C, Ciaccio M (2019) Vitamin D in malaria: more hypotheses than clues. Heliyon 5(2):e01183. https://doi.org/10.1016/j.heliyon.2019.e01183

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bivona G, Agnello L, Pivetti A, Milano S, Scazzone C, Sasso BL, Ciaccio M (2016) Association between hypovitaminosis D and systemic sclerosis: true or fake? Clin Chim Acta 458:115–9. https://doi.org/10.1016/j.cca.2016.04.026

    CAS  Article  PubMed  Google Scholar 

  31. Bivona G, Bellia C, Lo Sasso B, Agnello L, Scazzone C, Novo G, Ciaccio M (2016) Short-term changes in Gal 3 circulating levels after acute myocardial infarction. Arch Med Res 47(7):521–525. https://doi.org/10.1016/j.arcmed.2016.12.009

    CAS  Article  PubMed  Google Scholar 

  32. Bivona G, Lo Sasso B, Iacolino G, Gambino CM, Scazzone C, Agnello L, Ciaccio M (2019) Standardized measurement of circulating vitamin D [25(OH)D] and its putative role as a serum biomarker in Alzheimer’s disease and Parkinson’s disease. Clin Chim Acta 497:82–87. https://doi.org/10.1016/j.cca.2019.07.022

    CAS  Article  PubMed  Google Scholar 

  33. Brance ML, Miljevic JN, Tizziani R et al (2018) Serum 25-hydroxyvitamin D levels in hospitalized adults with community-acquired pneumonia. Clin Respir J 12(7):2220–2227. https://doi.org/10.1111/crj.12792

    CAS  Article  PubMed  Google Scholar 

  34. Caruso A, Bellia C, Pivetti A, Agnello L, Bazza F, Scazzone C, Bivona G, Lo Sasso B, Ciaccio M (2014) Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharmgenomics Pers Med 7:117–20. https://doi.org/10.2147/PGPM.S55548

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Chichiarelli S, Gaucci E, Ferraro A, Grillo C, Altieri F, Cocchiola R, Arcangeli V, Turano C, Eufemi M (2010) Role of ERp57 in the signaling and transcriptional activity of STAT3 in a melanoma cell line. Arch Biochem Biophys 494(2):178–83

    CAS  Article  Google Scholar 

  36. Chiuso-Minicucci F, Ishikawa LL, Mimura LA, Fraga-Silva TF, França TG, Zorzella-Pezavento SF, Marques C, Ikoma MR, Sartori A (2015) Treatment with vitamin D/MOG association suppresses experimental autoimmune encephalomyelitis. PLoS One 10(5):e0125836. https://doi.org/10.1371/journal.pone.0125836

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G (2016) Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 96(1):365–408. https://doi.org/10.1152/physrev.00014.2015

    CAS  Article  PubMed  Google Scholar 

  38. Ciaccio M, Bivona G, Di Sciacca R et al (2008) Changes in serum fetuin-A and inflammatory markers levels in end-stage renal disease (ESRD): effect of a single session haemodialysis. Clin Chem Lab Med 46(2):212–4

    CAS  Article  Google Scholar 

  39. Ciaccio M, Fugardi G, Titone L, Romano A, Giordano S, Bivona G, Scarlata F, Vocca L, Di Gangi M (2004) Procalcitonin levels in plasma in oncohaematologic patients with and without bacterial infections. Clinica Chimica Acta 340(1–2):149–152

    CAS  Article  Google Scholar 

  40. Cierny D, Michalik J, Škereňová M, Kantorová E, Sivák Š, Javor J, Kurča E, Dobrota D, Lehotský J (2016) ApaI, BsmI and TaqI VDR gene polymorphisms in association with multiple sclerosis in Slovaks. Neurol Res 38(8):678–84. https://doi.org/10.1080/01616412.2016.1200287

    CAS  Article  PubMed  Google Scholar 

  41. Cleve H, Constans J (1988) The mutants of the vitamin-D-binding protein: more than 120 variants of the GC/DBP system. Vox Sang 54(4):215–25

    CAS  Article  Google Scholar 

  42. Cox MB, Ban M, Bowden NA, Baker A, Scott RJ, Lechner-Scott J (2012) Potential association of vitamin D receptor polymorphism Taq1 with multiple sclerosis. Mult Scler 18(1):16–22. https://doi.org/10.1177/1352458511415562

    CAS  Article  PubMed  Google Scholar 

  43. Dastani Z, Li R, Richards B (2013) Genetic regulation of vitamin D levels. Calcif Tissue 92(2):106–17. https://doi.org/10.1007/s00223-012-9660-z

    CAS  Article  Google Scholar 

  44. Dickinson JL, Perera DI, van der Mei AF, Ponsonby AL, Polanowski AM, Thomson RJ, Taylor BV, McKay JD, Stankovich J, Dwyer T (2009) Past environmental sun exposure and risk of multiple sclerosis: a role for the Cdx-2 Vitamin D receptor variant in this interaction. Mult Scler 15(5):563–70. https://doi.org/10.1177/1352458509102459

    CAS  Article  PubMed  Google Scholar 

  45. Disanto G, Sandve GK, Berlanga-Taylor AJ, Ragnedda G, Morahan JM, Watson CT, Giovannoni G, Ebers GC, Ramagopalan SV (2012) Vitamin D receptor binding, chromatin states and association with multiple sclerosis. Hum Mol Genet 21(16):3575–86. https://doi.org/10.1093/hmg/dds189

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH (2010) T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 162(1):1–11. https://doi.org/10.1111/j.1365-2249.2010.04143.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Fukazawa T, Yabe I, Kikuchi S, Sasaki H, Hamada T, Miyasaka K, Tashiro K (1999) Association of vitamin D receptor gene polymorphism with multiple sclerosis in Japanese. J Neurol Sci 166(1):47–52

    CAS  Article  Google Scholar 

  48. Gao Q, Fan Y, Mu LY et al (2015) S100B and ADMA in cerebral small vessel disease and cognitive dysfunction. J Neurol Sci 354(1–2):27–32. https://doi.org/10.1016/j.jns.2015.04.031

    CAS  Article  PubMed  Google Scholar 

  49. García-Martín E, Agúndez JA, Martínez C, Benito-León J, Millán-Pascual J, Calleja P, Díaz-Sánchez M, Pisa D, Turpín-Fenoll L, Alonso-Navarro H, Ayuso-Peralta L, Torrecillas D, Plaza-Nieto JF, Jiménez-Jiménez FJ (2013) Vitamin D3 receptor ( VDR ) gene rs2228570 (Fok1) and rs731236 (Taq1) variants are not associated with the risk for multiple sclerosis: results of a new study and a meta-analysis. PLoS One 8(6):e65487. https://doi.org/10.1371/journal.pone.0065487

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Gauzzi MC (2018) Vitamin D-binding protein and multiple sclerosis: Evidence, controversies, and needs. Mult Scler 24(12):1526–1535. https://doi.org/10.1177/1352458518792433

    CAS  Article  PubMed  Google Scholar 

  51. Gianfrancesco MA, Stridh P, Rhead B, Shao X, Xu E, Graves JS, Chitnis T, Waldman A, Lotze T, Schreiner T, Belman A, Greenberg B, Weinstock-Guttman B, Aaen G, Tillema JM, Hart J, Caillier S, Ness J, Harris Y, Rubin J, Candee M, Krupp L, Gorman M, Benson L, Rodriguez M, Mar S, Kahn I, Rose J, Roalstad S, Casper TC, Shen L, Quach H, Quach D, Hillert J, Bäärnhielm M, Hedstrom A, Olsson T, Kockum I, Alfredsson L, Metayer C, Schaefer C, Barcellos LF, Waubant E (2017) Network of pediatric multiple sclerosis centers. Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS. Neurology. 88(17):1623–1629. https://doi.org/10.1212/WNL.0000000000003849

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Giulia B, Luisa A, Concetta S et al (2015) Procalcitonin and community-acquired pneumonia (CAP) in children. Clin Chim Acta 451(Pt B):215–8. https://doi.org/10.1016/j.cca.2015.09.031

    CAS  Article  PubMed  Google Scholar 

  53. Glade MJ (2013) Vitamin D: health panacea or false prophet? Nutrition 29(1):37–41. https://doi.org/10.1016/j.nut.2012.05.010

    CAS  Article  PubMed  Google Scholar 

  54. Golden LC, Voskuhl R (2017) The importance of studying sex differences in disease: The example of multiple sclerosis. J Neurosci Res 95(1–2):633–643. https://doi.org/10.1002/jnr.23955

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Goudarzvand M, Javan M, Mirnajafi-Zadeh J, Mozafari S, Tiraihi T (2010) Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cell Mol Neurobiol 30(2):289–99. https://doi.org/10.1007/s10571-009-9451-x

    CAS  Article  PubMed  Google Scholar 

  56. Graves JS, Barcellos LF, Krupp L, Belman A, Shao X, Quach H et al (2019) Vitamin D genes influence MS relapses in children. Mult Scler 13:1352458519845842. https://doi.org/10.1177/1352458519845842

    CAS  Article  Google Scholar 

  57. Groves NJ, McGrath JJ, Burne TH (2014) Vitamin D as a neurosteroid affecting the developing and adult brain. Annu Rev Nutr 34:117–41. https://doi.org/10.1146/annurev-nutr-071813-105557

    CAS  Article  PubMed  Google Scholar 

  58. Guo LH, Alexopoulos P, Perneczky R (2013) Heart-type fatty acid binding protein and vascular endothelial growth factor: cerebrospinal fluid biomarker candidates for Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 263(7):553–60. https://doi.org/10.1007/s00406-013-0405-4

    Article  PubMed  Google Scholar 

  59. Herrmann M, Farrell CL, Pusceddu I, Fabregat-Cabello N, Cavalier E (2017) Assessment of vitamin D status - a changing landscape. Clin Chem Lab Med 55(1):3–26. https://doi.org/10.1515/cclm-2016-0264

    CAS  Article  PubMed  Google Scholar 

  60. Hettinghouse A, Liu R, Liu CJ (2018) Multifunctional molecule ERp57: From cancer to neurodegenerative diseases. Pharmacol Ther 181:34–48. https://doi.org/10.1016/j.pharmthera.2017.07.011

    CAS  Article  PubMed  Google Scholar 

  61. Hu Q, Teng W, Li J, Hao F et al (2016) Homocysteine and Alzheimer’s disease: evidence for a causal link from mendelian randomization. J Alzheimers Dis 52(2):747–56. https://doi.org/10.3233/JAD-150977

    CAS  Article  PubMed  Google Scholar 

  62. Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW (2004) The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha, 25(OH)2-vitamin D3 in vivo and in vitro. Mol Endocrinol 18(11):2660–71

    CAS  Article  Google Scholar 

  63. Hunter SF (2016) Overview and diagnosis of multiple sclerosis. Am J Manag Care 22(6 Suppl):s141-50

    PubMed  Google Scholar 

  64. Jeon SM, Shin EA (2018) Exploring vitamin D metabolism and function in cancer. Exp Mol Med 50(4):20. https://doi.org/10.1038/s12276-018-0038-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Jolliffe DA, Walton RT, Griffiths CJ, Martineau AR (2016) Single nucleotide polymorphisms in the vitamin D pathway associating with circulating concentrations of vitamin D metabolites and non-skeletal health outcomes: Review of genetic association studies. J Steroid Biochem Mol Biol 164:18–29. https://doi.org/10.1016/j.jsbmb.2015.12.007

    CAS  Article  PubMed  Google Scholar 

  66. Kamisli O, Acar C, Sozen M, Tecellioglu M, Yücel FE, Vaizoglu D, Özcan C (2018) The association between vitamin D receptor polymorphisms and multiple sclerosis in a Turkish population. Mult Scler Relat Disord 20:78–81. https://doi.org/10.1016/j.msard.2018.01.002

    Article  PubMed  Google Scholar 

  67. Kim CJ, Kaplan LE, Perwad F, Huang N, Sharma A, Choi Y, Miller WL, Portale AA (2007) Vitamin D 1alpha-hydroxylase gene mutations in patients with 1alpha-hydroxylase deficiency. J Clin Endocrinol Metab 92(8):3177–82

    CAS  Article  Google Scholar 

  68. Kosakai A, Ito D, Nihei Y, Yamashita S, Okada Y, Takahashi K, Suzuki N (2011) Degeneration of mesencephalic dopaminergic neurons in klotho mouse related to vitamin D exposure. Brain Res 1382:109–17

    CAS  Article  Google Scholar 

  69. Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26(1):328–32

    CAS  Article  Google Scholar 

  70. Křenek P, Benešová Y, Bienertová-Vašků J, Vašků A (2018) The impact of five VDR polymorphisms on multiple sclerosis risk and progression: a case-control and genotype-phenotype study. J Mol Neurosci 64(4):559–566. https://doi.org/10.1007/s12031-018-1034-1

    CAS  Article  PubMed  Google Scholar 

  71. Kuusisto H, Kaprio J, Kinnunen E, Luukkaala T, Koskenvuo M, Elovaara I (2008) Concordance and heritability of multiple sclerosis in Finland: study on a nationwide series of twins. Eur J Neurol 15(10):1106–10. https://doi.org/10.1111/j.1468-1331.2008.02262.x

    CAS  Article  PubMed  Google Scholar 

  72. Lambrinoudaki I, Patikas E, Kaparos G, Armeni E, Rizos D, Thoda P, Alexandrou A, Antoniou A, Tsivgoulis G, Gatzonis S, Panoulis C, Triantafyllou N (2013) Vitamin D receptor Bsm1 polymorphism, calcium metabolism and bone mineral density in patients with multiple sclerosis: a pilot study. Neurol Sci 34(8):1433–9. https://doi.org/10.1007/s10072-012-1259-7

    Article  PubMed  Google Scholar 

  73. Langer-Gould A, Lucas RM, Xiang AH, Wu J, Chen LH, Gonzales E, Haraszti S, Smith JB, Quach H, Barcellos LF (2018) Vitamin D-Binding Protein Polymorphisms, 25-Hydroxyvitamin D, Sunshine and Multiple Sclerosis. Nutrients 10(2):184. https://doi.org/10.3390/nu10020184

    CAS  Article  PubMed Central  Google Scholar 

  74. Laursen JH, Søndergaard HB, Albrechtsen A, Frikke-Schmidt R, Koch-Henriksen N, Soelberg Sørensen P, Sellebjerg F, Oturai A (2015) Genetic and environmental determinants of 25-hydroxyvitamin D levels in multiple sclerosis. Mult Scler 21(11):1414–22. https://doi.org/10.1177/1352458514563590

    CAS  Article  PubMed  Google Scholar 

  75. Legroux L, Arbour N (2015) Multiple sclerosis and T lymphocytes: an entangled story. J Neuroimmune Pharmacol 10(4):528–46. https://doi.org/10.1007/s11481-015-9614-0

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lemire JM, Archer DC (1991) 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest 87(3):1103–1107. https://doi.org/10.1172/JCI115072

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Lin R, Taylor BV, Simpson S Jr, Charlesworth J, Ponsonby AL, Pittas F, Dwyer T, van der Mei I (2014) Association between multiple sclerosis risk-associated SNPs and relapse and disability–a prospective cohort study. Mult Scler 20(3):313–21. https://doi.org/10.1177/1352458513496882

    CAS  Article  PubMed  Google Scholar 

  78. Lindblom B, Wetterling G, Link H (1988) Distribution of group-specific component subtypes in multiple sclerosis. Acta Neurol Scand 78(5):443–4

    CAS  Article  Google Scholar 

  79. Littlejohns TJ, Henley WE, Lang IA et al (2014) Vitamin D and the risk of dementia and Alzheimer disease. Neurology 83(10):920–8. https://doi.org/10.1212/WNL.0000000000000755

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Lu M, Taylor BV, Körner H (2018) Genomic effects of the vitamin D receptor: potentially the link between vitamin D, immune cells, and multiple sclerosis. Front Immunol 9:477. https://doi.org/10.3389/fimmu.2018.00477

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Mak A (2018) The impact of vitamin D on the immunopathophisiology, disease activity, and extra-muskuloskeletal manifestations of systemic erithematosus lupus. J Mol Sci 19(8):E2355

    Article  Google Scholar 

  82. Mamutse G, Woolmore J, Pye E, Partridge J, Boggild M, Young C, Fryer A, Hoban PR, Rukin N, Alldersea J, Strange RC, Hawkins CP (2008) Vitamin D receptor gene polymorphism is associated with reduced disability in multiple sclerosis. Mult Scler 14(9):1280–3. https://doi.org/10.1177/1352458508094643

    CAS  Article  PubMed  Google Scholar 

  83. Manousaki D, Dudding T, Haworth S, Hsu YH, Liu CT, Medina-Gómez C, Voortman T, van der Velde N, Melhus H, Robinson-Cohen C, Cousminer DL, Nethander M et al (2017) Low-frequency synonymous coding variation in CYP2R1 has large effects on vitamin D levels and risk of multiple sclerosis. Am J Hum Genet 101(2):227–238. https://doi.org/10.1016/j.ajhg.2017.06.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Martin A, David V, Quarles LD (2012) Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev 92(1):131–55. https://doi.org/10.1152/physrev.00002.2011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Matías-Guíu J, Oreja-Guevara C, Matias-Guiu JA, Gomez-Pinedo U (2018) Vitamin D and remyelination in multiple sclerosis. Neurologia 33(3):177–186. https://doi.org/10.1016/j.nrl.2016.05.001

    Article  PubMed  Google Scholar 

  86. Mimura LA, Chiuso-Minicucci F, Fraga-Silva TF, Zorzella-Pezavento SF, França TG, Ishikawa LL, Penitenti M, Ikoma MR, Sartori A (2016) Association of myelin peptide with vitamin D prevents autoimmune encephalomyelitis development. Neuroscience 317:130–40. https://doi.org/10.1016/j.neuroscience.2015.12.053

    CAS  Article  PubMed  Google Scholar 

  87. Mokry LE, Ross S, Ahmad OS, Forgetta V, Smith GD, Goltzman D, Leong A, Greenwood CM, Thanassoulis G, Richards JB (2015) Vitamin D and risk of multiple sclerosis: a mendelian randomization study. PLoS Med 12(8):e1001866. https://doi.org/10.1371/journal.pmed.1001866

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Mowry EM, Krupp LB, Milazzo M, Chabas D, Strober JB, Belman AL, McDonald JC, Oksenberg JR, Bacchetti P, Waubant E (2010) Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann Neurol 67(5):618–24. https://doi.org/10.1002/ana.21972

    CAS  Article  PubMed  Google Scholar 

  89. Munger KL, Hongell K, Åivo J, Soilu-Hänninen M, Surcel HM, Ascherio A (2017) 25-Hydroxyvitamin D deficiency and risk of MS among women in the Finnish Maternity Cohort. Neurology 89(15):1578–1583. https://doi.org/10.1212/WNL.0000000000004489

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A (2006) Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296(23):2832–8

    CAS  Article  Google Scholar 

  91. Nagai J, Christensen EI, Morris SM, Willnow TE, Cooper JA, Nielsen R (2005) Mutually dependent localization of megalin and Dab2 in the renal proximal tubule. Am J Physiol Renal Physiol 289(3):F569-76

    CAS  Article  Google Scholar 

  92. Narooie-Nejad M, Moossavi M, Torkamanzehi A, Moghtaderi A, Salimi S (2015) Vitamin D receptor gene polymorphism and the risk of multiple sclerosis in South Eastern of Iran. J Mol Neurosci 56(3):572–6. https://doi.org/10.1007/s12031-015-0513-x

    CAS  Article  PubMed  Google Scholar 

  93. Narooie-Nejad M, Moossavi M, Torkamanzehi A, Moghtaderi A (2015) Positive association of vitamin D receptor gene variations with multiple sclerosis in South East Iranian population. Biomed Res Int 2015:427519. https://doi.org/10.1155/2015/427519

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Nielsen NM, Munger KL, Koch-Henriksen N, Hougaard DM, Magyari M, Jørgensen KT, Lundqvist M, Simonsen J, Jess T, Cohen A, Stenager E, Ascherio A (2017) Neonatal vitamin D status and risk of multiple sclerosis: A population-based case-control study. Neurology 88(1):44–51. https://doi.org/10.1212/WNL.0000000000003454

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Nieves J, Cosman F, Herbert J, Shen V, Lindsay R (1994) High prevalence of vitamin D deficiency and reduced bone mass in multiple sclerosis. Neurology 44:1687–1692

    CAS  Article  Google Scholar 

  96. Niino M, Fukazawa T, Yabe I, Kikuchi S, Sasaki H, Tashiro K (2000) Vitamin D receptor gene polymorphism in multiple sclerosis and the association with HLA class II alleles. J Neurol Sci 177(1):65–71

    CAS  Article  Google Scholar 

  97. Niino M, Kikuchi S, Fukazawa T, Yabe I, Tashiro K (2002) No association of vitamin D-binding protein gene polymorphisms in Japanese patients with MS. J Neuroimmunol 127(1–2):177–9

    CAS  Article  Google Scholar 

  98. Norman AW (2008) From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 88(2):491S-499S

    CAS  Article  Google Scholar 

  99. Nunn JD, Katz DR, Barker S et al (1986) Regulation of human tonsillar T-cell proliferation by the active metabolite of vitamin D3. Immunology 59(4):479–484

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, Melsen F, Christensen EI, Willnow TE (1999) An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96(4):507–15

    CAS  Article  Google Scholar 

  101. Oksenberg JR (2013) Decoding multiple sclerosis: an update on genomics and future directions. Expert Rev Neurother. 13(12 Suppl):11–9. https://doi.org/10.1586/14737175.2013.865867

    CAS  Article  PubMed  Google Scholar 

  102. Orton S, Wald L, Confavreux C et al (2011) Association of UV radiation with multiple sclerosis prevalence and sex ratio in France. Neurology 76(5):425–431. https://doi.org/10.1212/WNL.0b013e31820a0a9f

    Article  PubMed  PubMed Central  Google Scholar 

  103. Orton SM, Morris AP, Herrera BM, Ramagopalan SV, Lincoln MR, Chao MJ, Vieth R, Sadovnick AD, Ebers GC (2008) Evidence for genetic regulation of vitamin D status in twins with multiple sclerosis. Am J Clin Nutr 88(2):441–7

    CAS  Article  Google Scholar 

  104. Orton SM, Ramagopalan SV, Para AE, Lincoln MR, Handunnetthi L, Chao MJ, Morahan J, Morrison KM, Sadovnick AD, Ebers GC (2011) Vitamin D metabolic pathway genes and risk of multiple sclerosis in Canadians. J Neurol Sci 305(1–2):116–20. https://doi.org/10.1016/j.jns.2011.02.032

    CAS  Article  PubMed  Google Scholar 

  105. Pierrot-Deseilligny C, Souberbielle J (2010) Is hypovitaminosis D one of the environmental risk factors for multiple sclerosis. Brain 133(7):1869–1888. https://doi.org/10.1093/brain/awq147

    Article  PubMed  Google Scholar 

  106. Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ (2016) DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res 64:138–151. https://doi.org/10.1016/j.plipres.2016.09.003

    CAS  Article  PubMed  Google Scholar 

  107. Pytel V, Matías-Guiu JA, Torre-Fuentes L, Montero-Escribano P, Maietta P, Botet J, Álvarez S, Gómez-Pinedo U, Matías-Guiu J (2019) Exonic variants of genes related to the vitamin D signaling pathway in the families of familial multiple sclerosis using whole-exome next generation sequencing. Brain Behav 9(4):e01272. https://doi.org/10.1002/brb3.1272

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ramagopalan SV, Dyment DA, Cader MZ, Morrison KM, Disanto G, Morahan JM, Berlanga-Taylor AJ, Handel A, De Luca GC, Sadovnick AD, Lepage P, Montpetit A, Ebers GC (2011) Rare variants in the CYP27B1 gene are associated with multiple sclerosis. Ann Neurol 70(6):881–6. https://doi.org/10.1002/ana.22678

    CAS  Article  PubMed  Google Scholar 

  109. Ramagopalan SV, Yee IM, Dyment DA, Orton SM, Marrie RA, Sadovnick AD, Ebers GC (2009) Canadian collaborative study group parent-of-origin effect in multiple sclerosis: observations from interracial matings. Neurology 73(8):602–605. https://doi.org/10.1212/WNL.0b013e3181af33cf

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Ramasamy A, Trabzuni D, Forabosco P, Smith C, Walker R, Dillman A, Sveinbjornsdottir S, North American Brain Expression Consortium (NABEC), UK Brain Expression Consortium (UKBEC), Hardy J, Weale ME, Ryten M (2014) Genetic evidence for a pathogenic role for the vitamin D3 metabolizing enzyme CYP24A1 in multiple sclerosis. Mult Scler Relat Disord 3(2):211–219

    Article  Google Scholar 

  111. Rhead B, Bäärnhielm M, Gianfrancesco M, Mok A, Shao X, Quach H, Shen L, Schaefer C, Link J, Gyllenberg A, Hedström AK, Olsson T (2016) Mendelian randomization shows a causal effect of low vitamin D on multiple sclerosis risk. Neurol Genet 2(5):e97. https://doi.org/10.1212/NXG.0000000000000097

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, Edkins S et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2. Nature 476(7359):214–219. https://doi.org/10.1038/nature10251

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Scazzone C, Agnello L, Ragonese P, Lo Sasso B, Bellia C, Bivona G, Schillaci R, Salemi G, Ciaccio M (2018) Association of CYP2R1 rs10766197 with MS risk and disease progression. J Neurosci Res 96(2):297–304. https://doi.org/10.1002/jnr.24133

    CAS  Article  PubMed  Google Scholar 

  114. Simon KC, Munger KL, Yang Xing, Ascherio A (2010) Polymorphisms in vitamin D metabolism related genes and risk of multiple sclerosis. Mult Scler 16(2):133–8. https://doi.org/10.1177/1352458509355069

    CAS  Article  PubMed  Google Scholar 

  115. Sioka C, Papakonstantinou S, Markoula S, Gkartziou F, Georgiou A, Georgiou I, Pelidou SH, Kyritsis AP, Fotopoulos A (2011) Vitamin D receptor gene polymorphisms in multiple sclerosis patients in northwest Greece. J Negat Results Biomed 10:3. https://doi.org/10.1186/1477-5751-10-3

    Article  PubMed  PubMed Central  Google Scholar 

  116. Smolders J, Damoiseaux J, Menheere P, Tervaert JW, Hupperts R (2009) Fok-I vitamin D receptor gene polymorphism (rs10735810) and vitamin D metabolism in multiple sclerosis. J Neuroimmunol 207(1–2):117–21. https://doi.org/10.1016/j.jneuroim.2008.12.011

    CAS  Article  PubMed  Google Scholar 

  117. Soilu-Hänninen M, Laaksonen M, Laitinen I, Erälinna JP, Lilius EM, Mononen I (2008) A longitudinal study of serum 25-hydroxyvitamin D and intact parathyroid hormone levels indicate the importance of vitamin D and calcium homeostasis regulation in multiple sclerosis. J Neurol Neurosurg Psychiatry 79(2):152–7

    Article  Google Scholar 

  118. Steckley JL, Dyment DA, Sadovnick AD, Risch N, Hayes C, Ebers GC (2000) Genetic analysis of vitamin D related genes in Canadian multiple sclerosis patients. Canadian Collaborative Study Group. Neurology 54(3):729–32

    CAS  Article  Google Scholar 

  119. Sundqvist E, Bäärnhielm M, Alfredsson L, Hillert J, Olsson T, Kockum I (2010) Confirmation of association between multiple sclerosis and CYP27B1. Eur J Hum Genet 18(12):1349–52. https://doi.org/10.1038/ejhg.2010.113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. Tajouri L, Ovcaric M, Curtain R, Johnson MP, Griffiths LR, Csurhes P, Pender MP, Lea RA (2005) Variation in the vitamin D receptor gene is associated with multiple sclerosis in an Australian population. J Neurogenet 19(1):25–38

    CAS  Article  Google Scholar 

  121. Tiwari S, Lapierre J, Ojha CR, Martins K, Parira T, Dutta RK, Caobi A, Garbinski L, Ceyhan Y, Esteban-Lopez M, El-Hage N (2018) Signaling pathways and therapeutic perspectives related to environmental factors associated with multiple sclerosis. J Neurosci Res 96(12):1831–1846. https://doi.org/10.1002/jnr.24322

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Tsuprykov O, Chen X, Hocher CF, Skoblo R, Yin L, Hocher B (2018) Why should we measure free 25(OH) vitamin D? J Steroid Biochem Mol Biol 180:87–104. https://doi.org/10.1016/j.jsbmb.2017.11.014

    CAS  Article  PubMed  Google Scholar 

  123. Ueda P, Rafatnia F, Bäärnhielm M, Fröbom R, Korzunowicz G, Lönnerbro R, Hedström AK, Eyles D, Olsson T, Alfredsson L (2014) Neonatal vitamin D status and risk of multiple sclerosis. Ann Neurol 76(3):338–46. https://doi.org/10.1002/ana.24210

    CAS  Article  PubMed  Google Scholar 

  124. van der Mei I, Ponsonby A, Blizzard L, Dwyer T (2001) Regional variation in multiple sclerosis prevalence in Australia and its association with ambient ultraviolet radiation. Neuroepidemiology 20(3):168–174. https://doi.org/10.1159/000054783

    Article  PubMed  Google Scholar 

  125. van der Mei IA, Ponsonby AL, Dwyer T, Blizzard L, Taylor BV, Kilpatrick T, Butzkueven H, McMichael AJ (2007) Vitamin D levels in people with multiple sclerosis and community controls in Tasmania. Australia. J Neurol 254(5):581–90

    Article  Google Scholar 

  126. Vivona N, Bivona G, Noto D, Sasso BL, Cefalù AB, Chiarello G, Falletta A, Ciaccio M, Averna MR (2009) C-reactive protein but not soluble CD40 ligand and homocysteine is associated to common atherosclerotic risk factors in a cohort of coronary artery disease patients. Clin Biochem 42(16–17):1713–8. https://doi.org/10.1016/j.clinbiochem.2009.08.014

    CAS  Article  PubMed  Google Scholar 

  127. Vukusic S, Van Bockstael V, Gosselin S, Confavreux C (2006) Regional variations in the prevalence of multiple sclerosis in French farmers. J Neurol Neurosurg Psychiatr 78(7):707–709. https://doi.org/10.1136/jnnp.2006.101196

    Article  Google Scholar 

  128. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, Kiel DP, Streeten EA, Ohlsson C, Koller DL, Peltonen L, Cooper JD, O’Reilly PF et al (2010) Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376(9736):180–8. https://doi.org/10.1016/S0140-6736(10)60588-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. Wassif CA, Zhu P, Kratz L, Krakowiak PA, Battaile KP, Weight FF, Grinberg A, Steiner RD, Nwokoro NA, Kelley RI, Stewart RR, Porter FD (2001) Biochemical, phenotypic and neurophysiological characterization of a genetic mouse model of RSH/Smith–Lemli–Opitz syndrome. Hum Mol Genet 10(6):555–64

    CAS  Article  Google Scholar 

  130. Westerlind H, Ramanujam R, Uvehag D, Kuja-Halkola R, Boman M, Bottai M, Lichtenstein P, Hillert J (2014) Modest familial risks for multiple sclerosis: a registry-based study of the population of Sweden. Brain 137(Pt 3):770–8. https://doi.org/10.1093/brain/awt356

    Article  PubMed  PubMed Central  Google Scholar 

  131. Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC (2003) Canadian Collaborative Study Group. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci USA 100(22):12877–82

    CAS  Article  Google Scholar 

  132. Yamout B, Karaky NM, Mahfouz RA, Jaber F, Estaitieh N, Shamaa D, Abbas F, Hoteit R, Daher RT (2016) Vitamin D receptor biochemical and genetic profiling and HLA-class II genotyping among Lebanese with multiple sclerosis - A pilot study. J Neuroimmunol 293:59–64. https://doi.org/10.1016/j.jneuroim.2016.02.008

    CAS  Article  PubMed  Google Scholar 

  133. Yucel FE, Kamıslı O, Acar C, Sozen M, Tecellioğlu M, Ozcan C (2018) Analysis of Vitamin D receptor polymorphisms in patients with familial multiple sclerosis. Med Arc 72(1):58–61. https://doi.org/10.5455/medarh.2017.72.58-61

    Article  Google Scholar 

  134. Zhang YJ, Zhang L, Chen SY, Yang GJ, Huang XL, Duan Y, Yang LJ, Ye DQ, Wang J (2018) Association between VDR polymorphisms and multiple sclerosis: systematic review and updated meta-analysis of case-control studies. Neurol Sci 39(2):225–234. https://doi.org/10.1007/s10072-017-3175-3

    Article  PubMed  Google Scholar 

  135. Zhu JG, Ochalek JT, Kaufmann M, Jones G, Deluca HF (2013) CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A 110(39):15650–5. https://doi.org/10.1073/pnas.1315006110

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhuang JC, Huang ZY, Zhao GX, Yu H, Li ZX, Wu ZY (2015) Variants of CYP27B1 are associated with both multiple sclerosis and neuromyelitis optica patients in Han Chinese population. Gene 557(2):236–9. https://doi.org/10.1016/j.gene.2014.12.045

    CAS  Article  PubMed  Google Scholar 

  137. Zinellu A, Sotgia S, Porcu P et al (2011) Carotid restenosis is associated with plasma ADMA concentrations in carotid endarterectomy patients. Clin Chem Lab Med 49(5):897–901. https://doi.org/10.1515/CCLM.2011.121

    CAS  Article  PubMed  Google Scholar 

  138. Zou L, Porter TD (2015) Rapid suppression of 7-dehydrocholesterol reductase activity in keratinocytes by vitamin D. J Steroid Biochem Mol Biol 148:64–71. https://doi.org/10.1016/j.jsbmb.2014.12.00

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcello Ciaccio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scazzone, C., Agnello, L., Bivona, G. et al. Vitamin D and Genetic Susceptibility to Multiple Sclerosis. Biochem Genet 59, 1–30 (2021). https://doi.org/10.1007/s10528-020-10010-1

Download citation

Keywords

  • Vitamin D
  • Genetic
  • Genes
  • SNP
  • Multiple sclerosis
  • Susceptibility