Skip to main content

Advertisement

Log in

Leaf Transcriptome and Weight Gene Co-expression Network Analysis Uncovers Genes Associated with Photosynthetic Efficiency in Camellia oleifera

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Camellia oleifera Abel. (C. oleifera) as an important economic tree species in China has drawn growing attention because of its highly commercial, medic, cosmetic, and ornamental value. To deepen our understanding about the photosynthetic characters during the whole developmental stage as well as the molecular basis of photosynthesis, a comparative analysis of the leaf transcriptome of two C. oleifera cultivars, ‘Guoyou No.13’ (GY13) and ‘Xianglin No.82’ (XL82), with different photosynthetic characteristics from May to September has been conducted. In this study, a group of genes related to photosynthesis, hormone regulation, circadian clock and transcription factor, involved in the photosynthetic advantage. Photosynthetic parameters from May to September of these two cultivars provided evidence supporting photosynthetic advantage of GY13 compared to XL82. In addition, expression levels of 12 differentially expressed genes (DEGs) were validated using real-time PCR (RT-PCR). To screen gene clusters and hub genes that might directly regulated the photosynthetic differences between cultivars, a Weight Gene Co-expression Network Analysis (WGCNA) was conducted. Three co-expression network (module) and top ten connected genes (hub genes) were identified that might play crucial role in the regulatory network of photosynthesis. The results not only showed multiple functional genes that might involve in the differences of photosynthetic characteristics between cultivars, but also provide some evidences for the heat tolerance might be an important character which helps GY13 kept higher photosynthetic parameters than XL82 during the developmental stage. In summary, our transcriptomic approach together with RT-PCR tests allowed us to expand our understanding of the characters of C. oleifera cultivars with different photosynthetic efficiency during the developmental stage and to further exploring new candidate genes involve in high photosynthetic efficiency in molecular-assisted breeding program of C. oleifera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Asad M, Zakari S, Zhao Q, Zhou L, Ye Y, Cheng F (2019) Abiotic stresses intervene with ABA signaling to induce destructive metabolic pathways leading to death: premature leaf senescence in plants. Int J Mol Sci 20:256

    Article  PubMed Central  CAS  Google Scholar 

  • Bendix C, Marshall CM, Harmon FG (2015) Circadian clock genes universally control key agricultural traits. Mol Plant 8:1135–1152

    Article  CAS  PubMed  Google Scholar 

  • Bielczynski LW, Schansker G, Croce R (2019) Consequences of the reduction of the Photosystem II antenna size on the light acclimation capacity of Arabidopsis thaliana. Plant Cell Environ 43:866–879

    Article  CAS  Google Scholar 

  • Boneh U, Biton I, Schwartz A, Ben-Ari G (2012) Characterization of the ABA signal transduction pathway in Vitis vinifera. Plant Sci 187:89–96

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Silva E, Scales JC, Madgwick PJ, Parry MA (2015) Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38:1817–1832

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Nolan T, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y (2017) Arabidopsis WRKY46, WRKY54 and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought response. Plant Cell 29:1425–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Sun YF, Kai WB, Liang B, Zhang YS, Zhai XW, Jiang L, Du YW, Leng P (2016) Interactions of ABA signaling core components (SlPYLs, SlPP2Cs, and SlSnRK2s) in tomato (Solanum lycopersicon). J Plant Physiol 205:67–74

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang B, Chen J, Wang X, Wang R, Peng S, Chen L, Ma L, Luo J (2015) Identification of Rubisco rbcL and rbcS in Camellia oleifera and their potential as molecular markers for selection of high tea oil cultivars. Front Plant Sci 06:189

    Google Scholar 

  • Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci 15:57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chotewutmontri P, Williams-Carrier R, Barkan A (2020) Exploring the Link between Photosystem II Assembly and Translation of the Chloroplast psbA mRNA. Plants (Basel) 9

  • Driever SM, Simkin AJ, Alotaibi S, Fisk SJ, Madgwick PJ, Sparks CA, Jones HD, Lawson T, Parry M, Raines CA (2017) Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions. Philos Trans R Soc Lond B 372:20160724

    Article  CAS  Google Scholar 

  • Galmes J, Conesa MA, Diaz-Espejo A, Mir A, Perdomo JA, Niinemets U, Flexas J (2014) Rubisco catalytic properties optimized for present and future climatic conditions. Plant Sci 226:61–70

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green RM, Tobin EM (2002) The role of CCA1 and LHY in the plant circadian clock. Elsevier Inc, New York, pp 516–518

    Google Scholar 

  • Heyduk K, Moreno-Villena JJ, Gilman IS, Christin PA, Edwards EJ (2019) The genetics of convergent evolution: insights from plant photosynthesis. Nat Rev Genet 20:485–493

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Dong Q, Yu D (2012) Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against pathogen Pseudomonas syringae. Plant Sci 185–186:288–297

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Li M, Duan S, Fu M, Dong X, Liu B, Feng D, Wang J, Wang HB (2016) Optimization of light-harvesting pigment improves photosynthetic efficiency. Plant Physiol 172:1720–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  • Liu C, Chen L, Tang W, Peng S, Li M, Deng N, Chen Y (2018) Predicting potential distribution and evaluating suitable soil condition of oil tea camellia in China. Forests 9:487

    Article  Google Scholar 

  • Long SP, Marshall-Colon A, Zhu X (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161:56–66

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NH, Cheong J-J (2018) The AtMYB44 promoter is accessible to signals that induce different chromatin modifications for gene transcription. Plant Physiol Biochem 130:14–19

    Article  CAS  PubMed  Google Scholar 

  • Nohales MA, Kay SA (2019) GIGANTEA gates gibberellin signaling through stabilization of the DELLA proteins in Arabidopsis. Proc Natl Acad Sci USA 116:21893–21899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nohales MA, Liu W, Duffy T, Nozue K, Sawa M, Pruneda-Paz JL, Maloof JN, Jacobsen SE, Kay SA (2019) Multi-level Modulation of light signaling by Gigantea regulates both the output and pace of the circadian clock. Dev Cell 49:840–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowicka B, Ciura J, Szymanska R, Kruk J (2018) Improving photosynthesis, plant productivity and abiotic stress tolerance: current trends and future perspectives. J Plant Physiol 231:415–433

    Article  CAS  PubMed  Google Scholar 

  • O'Leary B, Park J, Plaxton WC (2011) The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochem J 436:15

    Article  CAS  PubMed  Google Scholar 

  • Ort DR, Merchant SS, Alric J, Barkan A, Blankenship RE, Bock R, Croce R, Hanson MR, Hibberd JM, Long SP, Moore TA, Moroney J, Niyogi KK, Martin AJP, Peralta-Yahya PP, Prince RC, Redding KE, Spalding MH, Klaas JVW, Wim FJV, Caemmerer SV, Andreas PMW, Yeates TO, Yuan JS, Zhu XG (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112:8529–8536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ort DR, Zhu X, Melis A (2011) Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiol 155:79–85

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TFF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterhansel C, Krause K, Braun H, Espie GS, Fernie AR, Hanson DT, Keech O, Maurino VG, Mielewczik M, Sage RF, Umeå U, Institutionen FFB, Teknisk-naturvetenskapliga F (2013) Engineering photorespiration: current state and future possibilities. Plant Biol (Stuttg) 15:754–758

    Article  CAS  Google Scholar 

  • Rojas-Gonzalez JA, Soto-Suarez M, Garcia-Diaz A, Romero-Puertas MC, Sandalio LM, Merida A, Thormahlen I, Geigenberger P, Serrato AJ, Sahrawy M (2015) Disruption of both chloroplastic and cytosolic FBPase genes results in a dwarf phenotype and important starch and metabolite changes in Arabidopsis thaliana. J Exp Bot 66:2673–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim JS, Jung C, Lee S, Min K, Lee Y, Choi Y, Lee JS, Song JT, Kim J, Choi YD (2013) AtMYB44 regulatesWRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. Plant J 73:483–495

    Article  CAS  PubMed  Google Scholar 

  • Simkin AJ, Lopez-Calcagno PE, Raines CA (2019) Feeding the world: improving photosynthetic efficiency for sustainable crop production. J Exp Bot 70:1119–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2010) Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51:1821–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang H, Deng T, Liu Z, Wang X (2019) Time-coursed transcriptome analysis identifies key expressional regulation in growth cessation and dormancy induced by short days in Paulownia. Sci Rep 9(1):1–14

    Google Scholar 

  • Wisniewski N, Cadeiras M, Bondar G, Cheng RK, Shahzad K, Onat D, Latif F, Korin Y, Reed E, Fakhro R (2013) Weighted gene coexpression network analysis (WGCNA) modeling of multiorgan dysfunction syndrome after mechanical circulatory support therapy. J Heart Lung Transplant 32:S223–S223

    Article  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan M, Xu F, Wang SD, Zhang DW, Zhang ZW, Cao Y, Xu XC, Luo MH, Yuan S (2012) A single leaf of Camellia oleifera has two types of carbon assimilation pathway, C3 and crassulacean acid metabolism. Tree Physiol 32:188–199

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. https://doi.org/10.2202/1544-6115.1128

    Article  PubMed  Google Scholar 

  • Zhao XY, Qi CH, Jiang H, You CX, Guan QM, Ma FW, Li YY, Hao YJ (2019) The MdWRKY31 transcription factor binds to the MdRAV1 promoter to mediate ABA sensitivity. Hortic Res 6:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou X, Zha M, Huang J, Li L, Imran M, Zhang C (2017) StMYB44 negatively regulates phosphate transport by suppressing expression of PHOSPHATE1 in potato. J Exp Bot 68:1265–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu G, Liu H, Xie Y, Liao Q, Lin Y, Liu Y, Liu Y, Xiao H, Gao Z, Hu S (2020) Postharvest processing and storage methods for Camellia oleifera seeds. Food Rev Int 36:319–339

    Article  CAS  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors thank Novogene for efficiently complete transcriptome sequencing project. Meanwhile, we wish to thank the Science and Technology Major Program and Natural Science Foundation of Hunan Province to offer the research funding.

Funding

This research was funded by Science and Technology Major Program of Hunan Province, China (Grant No. 2018NK1030), and the Natural Science Foundation of Hunan Province, China (Grant No.2019JJ50303).

Author information

Authors and Affiliations

Authors

Contributions

Software, CL.; validation, ZH and CL; investigation, RW and XW; data curation, ZH; writing—original draft preparation, ZH; writing—review and editing, ZH; supervision, YT; project administration, YC; funding acquisition, YC. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yun Tian or Yongzhong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Liu, C., Wang, X. et al. Leaf Transcriptome and Weight Gene Co-expression Network Analysis Uncovers Genes Associated with Photosynthetic Efficiency in Camellia oleifera. Biochem Genet 59, 398–421 (2021). https://doi.org/10.1007/s10528-020-09995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-020-09995-6

Keywords