Skip to main content
Log in

Morphometrics and Mitochondrial DNA Genes Analysis Suggest a New Species of Penaeus (Crustacea: Penaeidae) from the Persian Gulf

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

There are two morphotypes of Penaeus semisulcatus described hitherto in the Persian Gulf, namely the banded and non-banded antennae morphotypes. In this study, we used morphometric measurements and two mitochondrial genes (16S rRNA and cytochrome oxidase subunit I—COI) to assess relationships between the two morphotypes of P. semisulcatus. Out of 25 morphological characters examined, 10 characters were found significantly different between the two morphotypes when tested against separate sexes or both sexes combined. Results from the 16S rRNA and COI sequence analysis of two morphotypes of P. semisulcatus morphotype showed up to 6% and 17% sequence divergence, respectively. The 16S rDNA and COI sequences of the non-banding morphotype were not only very different to those of the banding morphotype but was also very different to all other Penaeus species (i.e., P. monodon, P. merguiensis, and P. indicus) included in the study. Both parsimony and Neighbor-Joining trees based on 16S rDNA and COI sequences provide similar tree topology that clearly separated the two morphotypes into two distinct groups. Based on these findings, we propose the two morphotypes of P. semisulcatus to be relegated as two sympatric species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Alam MMM, de Cross MDST, Pálsson S (2016) Mitochondrial DNA variation reveals distinct lineages in Penaeus semisulcatus (Decapoda, Penaeidae) from the Indo-West Pacific Ocean. Mar Ecol 38:1–11

    Google Scholar 

  • Allegrucci G, Cesaroni D, Venanzetti F, Cataudela S, Sbordoni V (1998) Length variation in mtDNA control region in hatchery stocks of European sea bass subjected to acclimation experiments. Genet Sel Evol 30:275–288

    Article  CAS  PubMed Central  Google Scholar 

  • Awadalla P, Eyre-Walker A, Smith JM (1999) Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science 286:2524–2525

    Article  CAS  PubMed  Google Scholar 

  • Baldwin JD, Bass AL, Bowen BW, Clark WH (1998) Molecular phylogeny and biogeography of the marine shrimp Penaeus. Mol Phylogenet Evol 10:399–407

    Article  CAS  PubMed  Google Scholar 

  • Bandelt HJ, Forester P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  Google Scholar 

  • Chu KH, Tong J, Chan TY (1999) Mitochondrial cytochrome oxidase I sequence divergence in some Chinese species of Charybdis (Crustacea: Decapoda: Portunidae). Biochem Syst Ecol 27:461–468

    Article  CAS  Google Scholar 

  • De Francisco AK, Galetti P (2005) Genetic distance between broodstocks of the marine shrimp Litopenaeus vannamei (Decapoda, Penaeidae) by mtDNA analyses. Genet Mol Biol 28:258–261

    Article  Google Scholar 

  • De Haan (1844) Penaeus semisulcatus, in Von Siebold, Fauna Japonica, Crustacea (6/7): Pl. 46. In: Holthuis LB (ed), FAO catalogue. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries, vol 1, no 125. Rijksmuseum of Natural History Leiden, The Netherlands

  • Dimmock A, Willamson I, Mather PB (2004) The influence of environment on the morphology of Macrobrachium australiense (Decapoda: Palaemonidae). Aquacult Int 12:435–456

    Article  Google Scholar 

  • Endler JA (1983) Natural and sexual selection on color patterns in poeciliid fishes. Environ Biol Fish 9(2):173–190

    Article  Google Scholar 

  • FAO (2016) The state of world fisheries and aquaculture. FAO, Rome

    Google Scholar 

  • Grey D, Dall W, Baker A (1983). A guide to the Australian Penaeid Prawns. Northern Territory Government Printing Office, The Department of Primary Production of the Northern Territory, Darwin, Australia

  • Gusmão J, Lazoski C, Solé-Cava AM (2000) A new species of Penaeus (Crustacea: Penaeidae) revealed by allozyme and cytochrome oxidase I analyses. Mar Biol 37:435–446

    Google Scholar 

  • Hayashi KI (1992) Dendobranchiata Crustaceans from Japanese Waters. Seibutsu Kenkyusha, Tokyo, p 300

    Google Scholar 

  • Holthuis LB (1980) Shrimp and prawns of the word. An annotated catalogue of species of interest to fisheries. FAO Species Catalog, Rome

    Google Scholar 

  • Kimura MA (1980) Simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Lavery S, Chan TY, TamY Chuc KH (2004) Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s.l. derived from mitochondrial DNA. Mol Phylogenet Evol 31:39–49

    Article  CAS  PubMed  Google Scholar 

  • Machado EG, Dennebouy N, Suarez MO, Mounolou JC (1993) Monnerot M Mitochondrial 16S-rRNA gene of two species of shrimps: sequence variability and secondary structure. Crustaceana 65:279–286

    Article  Google Scholar 

  • Maggioni R, Rogers AD, Maclean N, D’Incao F (2001) Molecular phylogeny of Western Atlantic Farfantepenaeus and Litopenaeus shrimp based on mitochondrial 16S partial sequences. Mol Phylogenet Evol 18:66–73

    Article  CAS  PubMed  Google Scholar 

  • Meyer A (1994) DNA technology and phylogeny of fish. In: Beaumont AR (ed) Genetics and the evolution of Aquatic Organisms Beaumont. Chapman and Hall, London, pp 219–249

    Google Scholar 

  • Palumbi SR, Benzie JAH (1991) Large mitochondrial DNA differences between morphologically similar Penaeid shrimp. Mol Mar Biol Biotech 1:27–34

    CAS  Google Scholar 

  • Paugy D, Leveque C (1999) Taxinomie et systématique. In: Lévêque C, Paugy D (eds) Les poissons des eaux continentales africaines Diversité, écologie et utilisation par l’homme. Edition IRD, Paris, pp 97–119

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sarver SK, Silberman JD, Walsh PJ (1998) Mitochondrial DNA sequence evidence supporting the recognition of two subspecies or species of the Florida spiny lobster Panulirus argus. J Crustac Biol 18:177–186

    Article  Google Scholar 

  • Schubart CD, Neigel JE, Felder DL (2000) Use of the mitochondrial 16S rRNA gene for phylogenetic and population studies of Crustacea. Crustac Issues 12:817–830

    Google Scholar 

  • Sekino M, Hara M, Taniguchi N (2002) Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthys olivaceus. Aquaculture 213:101–122

    Article  CAS  Google Scholar 

  • Simon C, Franke A, Martin A (1991) The polymerase chain reaction: DNA extraction and amplification. In: Hewitt GM, Johnson AWB, Young JPW (eds) Molecular techniques in taxonomy. Hewitt, Berlin, pp 329–355

    Chapter  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong JG, Chan TY, Chu KH (2000) A preliminary phylogenetic analysis of Metapenaeopsis (Decapoda: Penaeidae) based on mitochondrial DNA sequences of selected species from the Indo-West Pacific. J Crustac Biol 20:541–549

    Article  Google Scholar 

  • Tsoi KH, Wang ZY, Chu KH (2005) Genetic divergence between two morphologically similar varieties of the kuruma shrimp Penaeus japonicas. Mar Biol 147:367–379

    Article  CAS  Google Scholar 

  • Tzeng TD, Yeh SY (1999) Analysis of the morphometric characters of the kuruma shrimp (Penaeus japonicus) in the East China Sea and the Taiwan Strait. Taipei J Fish Soc Taiwan 26:203–212

    Google Scholar 

  • Yu HP, Chan TY (1986) The illustrated penaeoid prawns of Taiwan. Southern Materials Center Inc, Taipei

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Iranian Fisheries Sciences Research Institute, for helpful assistance. We thank the head of Persian Gulf and Oman Sea Ecological Research Institute, This research was funded by Postgraduate Research Grant Scheme from Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Tamadoni Jahromi.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamadoni Jahromi, S., Othman, A.S. & Rosazlina, R. Morphometrics and Mitochondrial DNA Genes Analysis Suggest a New Species of Penaeus (Crustacea: Penaeidae) from the Persian Gulf. Biochem Genet 57, 193–213 (2019). https://doi.org/10.1007/s10528-018-9884-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-018-9884-3

Keywords

Navigation