Skip to main content

Advertisement

Log in

Population Genetics of the Endangered and Wild Edible Plant Ottelia acuminata in Southwestern China Using Novel SSR Markers

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Ottelia acuminata is an edible aquatic plant species that is endemic to southwestern China. This plant has experienced habitat degradation resulting from environmental change and extensive human disturbance. Determining the genetic variation and genetic structure of O. acuminata populations could help develop strategies to collect, evaluate, utilize and conserve the species. To this end, we genotyped 183 individuals sampled throughout the species distribution using twelve novel nuclear microsatellite loci (nSSRs). Eight of these nSSRs exhibited low average levels of genetic diversity (HE = 0.351, Ho = 0.376) and showed evidence of significant inbreeding across several populations. A high degree of genetic differentiation was identified among populations (FST = 0.457), probably resulting from limited pollen and seed-mediated gene flow. Only 17.8% of variation existed between O. acuminata var. acuminata and other O. acuminata varieties. Bayesian analysis and a UPGMA dendrogram based on Nei’s genetic distance also revealed notably low genetic differentiation among the varieties. This low genetic differentiation is possibly attributed to shared ancestral polymorphisms since their divergence. Additional taxonomic and phylogenetic studies with additional molecular markers are needed to determine the population genetic relationship between O. acuminata varieties. Conservation of this species depends on in situ and ex situ actions, such as controlling habitat water pollution and overexploitation and creating a germplasm bank based on the population genetic differences. To the best of our knowledge, this study represents the first attempt to understand the population genetics of O. acuminata in China using novel nSSR markers developed from transcriptome sequencing and could contribute to the conservation management of this economic plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasi S, Afsharzadeh S, Saeidi H, Triest L (2016) Strong genetic differentiation of submerged plant populations across mountain ranges: evidence from Potamogeton pectinatus in Iran. PLoS ONE 11(8):e0161889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annul Rev Ecol Evol S 35(1):257–284

    Article  Google Scholar 

  • Allendorf FW, Likart G (2006) Conservation and the genetics of populations. Blackwell, Malden

    Google Scholar 

  • Barrett SCH, Eckert CG, Husband BC (1993) Evolutionary processes in aquatic plant populations. Aquat Bot 44(2–3):105–145

    Article  Google Scholar 

  • Chen JM, Du ZY, Long ZC, Gichira AW, Wang QF (2017) Molecular divergence among varieties of Ottelia acuminata (Hydrocharitaceae) in the Yunnan-Guizhou Plateau. Aquat Bot 140:62–68

    Article  CAS  Google Scholar 

  • Dieringer D, Schlotterer C (2003) MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3(1):167–169

    Article  CAS  Google Scholar 

  • Doyle J (1991) DNA protocols for plants—CTAB total DNA isolation. In: Hewitt GM, Johnston A (eds) Molecular techniques in taxonomy. Springer, Berlin

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14(8):2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    PubMed  PubMed Central  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Ferriol M, Pichot C, Lefevre F (2010) Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population. Heredity 106(1):146–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Goudet J (2001) FSTAT: a program to estimate and test gene diversities and fixation indices (version 2.9.3)

  • Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer Associates, Sunderland

    Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6(1):95–124

    Article  Google Scholar 

  • He JB, Sun XZ (1991) The infraspecific classification of the populations of Ottelia acuminata (Gagnep.) Dandy. J Wuhan Univ (Nat Sci Ed) 3:114–120

    Google Scholar 

  • Hedrick PW, Miller PS (1992) Conservation genetics: techniques and fundamentals. Ecol Appl 2(1):30–46

    Article  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jestrow B et al (2016) Genetic diversity and differentiation of the Critically Endangered Hispaniolan palm Coccothrinax jimenezii MM Mejia & RG Garcia based on novel SSR markers. Biochem Syst Ecol 66:216–223

    Article  CAS  Google Scholar 

  • Jiang ZT, Li H, Dao ZL (2005) Ottelia acuminata var. songmingensis, a new variety of the Hydrocharitaceae from Yunnan, China. Guihaia 25:424–425

    Google Scholar 

  • Jiang ZT, Li H, Dao ZL, Long CL (2010) Ethnobotanical study on Ottelia acuminata, an aquatic edible plant occurring in Yunnan. J Inner Mongolia Normal Univ (Nat Sci Ed) 39(2):163–168

    Google Scholar 

  • Ledig FT, Hodgskiss PD, Jacob-Cervantes V (2002) Genetic diversity, mating system, and conservation of a Mexican subalpine relict, Picea mexicana Martínez. Conserv Genet 3(2):113–122

    Article  CAS  Google Scholar 

  • Li H (1981) Classification, distribution and phylogeny of the genus Ottelia. Acta Phytotaxon Sin 19(1):29–42

    Google Scholar 

  • Li H (1987) The lake vegetation of Hengduan Mountains. Acta Bot Yunnan 9:257–270

    Google Scholar 

  • Li NY, Tian K, Chen YH, Liu ZP, Li J, Ao XY, Lei R (2015) Changes of Ottelia acuminata communities in the lakes of northwestern Yunnan Plateau over the past three decades. J Lake Sci 27(3):401–406

    Article  Google Scholar 

  • Liu KJ, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Long CL, Jiang ZT, Dao ZL (2011) Genetic diversity of Ottelia acuminata (Hydrocharitaceae) from the Eastern Himalayas, revealed by ISSR markers. Botanica Orientalis J Plant Sci 7:56–63

    Article  Google Scholar 

  • Lu RR, Yang ZY, Tao CC, Chen ST, Ji YH (2014) Microsatellites primer development for Ottelia acuminata (Hydrocharitaceae),a submerged macrophyte endemic to southwestern China. Guihaia 34(1):34–37, 83

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76(2):173–190

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220

    PubMed  CAS  Google Scholar 

  • Minder AM, Widmer A (2008) A population genomic analysis of species boundaries: neutral processes, adaptive divergence and introgression between two hybridizing plant species. Mol Ecol 17(6):1552–1563

    Article  PubMed  CAS  Google Scholar 

  • Moreira R, McCauley R, Cortés-Palomec A, Fernandes G, Oyama K (2010) Spatial genetic structure of Coccoloba cereifera (Polygonaceae), a critically endangered microendemic species of Brazilian rupestrian fields. Conserv Genet 11(4):1247–1255

    Article  CAS  Google Scholar 

  • Mutegi E, Snow AA, Rajkumar M, Pasquet R, Ponniah H, Daunay M-C, Davidar P (2015) Genetic diversity and population structure of wild/weedy eggplant (Solanum insanum, Solanaceae) in southern India: implications for conservation. Am J Bot 102(1):140–148

    Article  PubMed  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19(2):153–170

    Article  PubMed  CAS  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13(5):1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295

    Article  Google Scholar 

  • Peterson BJ et al (2013) Genetic diversity and gene flow in Zostera marina populations surrounding Long Island, New York, USA: no evidence of inbreeding, genetic degradation or population isolation. Aquat Bot 110:61–66

    Article  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12(4):844–855

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4(1):137–138

    Article  Google Scholar 

  • Schaal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97(13):7024–7029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schueler S et al (2013) Adaptive genetic diversity of trees for forest conservation in a future climate: a case study on Norway spruce in Austria. Biodivers Conserv 22(5):1151–1166

    Article  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538

    Article  CAS  Google Scholar 

  • Wang QF, Guo YH, Haynes RR, Hellquist CB (2010) Hydrocharitaceae. In: Wu ZY, Peter HR (eds) Flora of China, vol 23. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp 91–102

    Google Scholar 

  • Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, Sear D (2004) Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol Conserv 115(2):329–341

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163(3):1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Wright S (1931) Evolution in mendelian populations. Genetics 16:97–159

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28(2):114

    PubMed  PubMed Central  CAS  Google Scholar 

  • Xia J, Lu J, Wang ZX, Hao BB, Wang HB, Liu GH (2013) Pollen limitation and Allee effect related to population size and sex ratio in the endangered Ottelia acuminata (Hydrocharitaceae): implications for conservation and reintroduction. Plant Biol 15(2):376–383

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Du ZY, Chen JM, Wang QF (2012) Microsatellite primers for the endangered aquatic herb, Ottelia acuminata (Hydrocharitaceae). Am J Bot 99(6):E262–E264

    Article  PubMed  Google Scholar 

  • Yang M, Liu F, Han YN, Xu LM, Juntawong M, Liu YL (2013) Genetic diversity and structure in populations of Nelumbo from America, Thailand and China: implications for conservation and breeding. Aquat Bot 107:1–7

    Article  Google Scholar 

  • Yao XH, Ye QG, Kang M, Huang HW (2007) Microsatellite analysis reveals interpopulation differentiation and gene flow in the endangered tree Changiostyrax dolichocarpa (Styracaceae) with fragmented distribution in central China. New Phytol 176(2):472–480

    Article  PubMed  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11(10):413–418

    Article  PubMed  CAS  Google Scholar 

  • Yuan N, Sun Y, Comes HP, Fu CX, Qiu YX (2014) Understanding population structure and historical demography in a conservation context: population genetics of the endangered Kirengeshoma palmata (Hydrangeaceae). Am J Bot 101(3):521–529

    Article  PubMed  Google Scholar 

  • Zhai SH, Wang B, Wang DK, Zhang GF (2010) Caryotype of Ottelia acuminata var. lunanensis H. Li and evolution of Ottelia Pers. J Lake Sci 22(5):735–738

    Google Scholar 

  • Zhang HY, Tian K, Yu Y, Li LY, Yang YM (2009) Genetic diversity among natural populations of Ottelia acuminata (Gaghep.) Dandy revealed by ISSR. Afr J Biotechnol 8(22):6089–6093

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31360065) and the Applied Basic Research Project of Yunnan Province (No. 2016FD107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Hua Zhai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 869 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, S.H., Yin, G.S. & Yang, X.H. Population Genetics of the Endangered and Wild Edible Plant Ottelia acuminata in Southwestern China Using Novel SSR Markers. Biochem Genet 56, 235–254 (2018). https://doi.org/10.1007/s10528-018-9840-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-018-9840-2

Keywords

Navigation