Skip to main content
Log in

Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT3, FT4, TT3, and TT4) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baltaci AK, Mogulkoc R, Bediz CS, Kul A, Ugur A (2003) Pinealectomy and zinc deficiency have opposite effects on thyroid hormones in rats. Endocr Res 29:473–481

    Article  PubMed  Google Scholar 

  • Baltaci AK, Mogulkoc R, Kul A, Bediz CS, Ugur A (2004) Opposite effects of zinc and melatonin on thyroid hormones in rats. Toxicology 195:69–75

    Article  CAS  PubMed  Google Scholar 

  • Baltaci AK, Mogulkoc R, Halifeoglu I (2005) Effects of zinc deficiency and supplementation on plasma leptin levels in rats. Biol Trace Elem Res 104:41–46

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Udin S, Krishna A (2011) Regulation of leptin synthesis in white adipose tissue of the female fruit bat, cynopterus sphinx: role of melatonin with or without insulin. Exp Physiol 96:216–225

    Article  CAS  PubMed  Google Scholar 

  • Bediz CS, Baltaci AK, Mogulkoc R (2003) Both zinc deficiency and supplementation affect plasma melatonin levels in rats. Acta Physiol Hung 90:353–359

    Article  Google Scholar 

  • Belviranli M, Baltaci AK (2008) The relation between reduced serum melatonin levels and zinc in rats with induced hypothyroidism. Cell Biochem Funct 26:19–23

    Article  CAS  PubMed  Google Scholar 

  • Bondarenko LA, Sotnik NN, Chagovets EM, Sergienko LY, Cherevko AN (2011) Intensity of in vitro incorporation of 3H-melatonin in the thyroid gland of rabbits with pineal gland hypofunction. Bull Exp Biol Med 150:753–755

    Article  CAS  PubMed  Google Scholar 

  • Bossowski A, Sawicka B, Szalecki M, Koput A, Wysocka J, Zelazowska-Rutkowska B (2010) Analysis of serum adiponectin, resistin and leptin levels in children and adolescents with autoimmune thyroid disorders. J Pediatr Endocrinol Metab 23:369–377

    Article  CAS  PubMed  Google Scholar 

  • Brandao-Neto J, Saturnino ACRD, Leite LD, de Mederios-Rocha ED, Marcos CMP, da Silva CAB, Marchini JS, de Rezende AA, Almeide MDG, Mederios ADC (2006) Lack of acute zinc effect on thyrotropin-releasing hormone–stimulated thyroid-stimulating hormone secretion during oral zinc tolerance test in healthy men. Nutr Res 26:493–496

    Article  CAS  Google Scholar 

  • Bribiescas RG (2003) Effects of oral zinc supplementation on serum leptin levels in ache males of eastern Paraguay. Am J Human Biol 15:681–687

    Article  Google Scholar 

  • Buchinger W, Leopold B, Lind P, Langsteger W, Klima G, Költringer P, Wawschinek O, Eber O (1988) Changes in zinc level in the serum, whole blood and erythrocytes in disorders of thyroid function. Wien Klin Wochenschr 100:619–621

    CAS  PubMed  Google Scholar 

  • Calvino C, Império GE, Wilieman M, Costa-E-Sous RH, Souza LL, Trevenzoli IH, Pazos-Moura CC (2016) Hypothyroidism induces hypophagia associated with alterations in protein expression of neuropeptide Y and proopiomelanocortin in the arcuate nucleus, independently of hypothalamic nuclei-specific changes in leptin signaling. Thyroid 26:134–143

    Article  CAS  PubMed  Google Scholar 

  • Celinski K, Konturek PC, Konturek SJ, Slomka M, Cichoz-Lach H, Brzozowski T, Bielanski W (2011) Central NPY-Y5 receptors activation plays a major role in fasting-induced pituitary-thyroid axis suppression in adult rat. Regul Pept 171:43–47

    Article  Google Scholar 

  • Chen MD, Song YM, Lin PY (2000) Zinc may be a mediator of leptin production in humans. Life Sci 66:2143–2149

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt RA, Foskolos A, Giesy SL, Wesolowski SR, Krumm CS, Butler W, Quirk S, Waldron MR, Boisclair YR (2016) Increased plasma leptin attenuates adaptive metabolism in early lactating dairy cows. J Endocrinol 229:145–157

    Article  CAS  PubMed  Google Scholar 

  • Erfurth EM, Ekman R, Ahrén B (1990) Plasma neuropeptides in hyperthyroidism. Thyroidology 2:59–63

    CAS  PubMed  Google Scholar 

  • Fekete C, Kelly J, Mihály E, Sarkar S, Rand WM, Légrádi G, Emerson CH, Lechan RM (2001) Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology 142:2606–2613

    Article  CAS  PubMed  Google Scholar 

  • Fekete C, Sarkar S, Rand WM, Harney JW, Emerson CH, Bianco AC, Lechan RM (2002) Agouti-related protein (AGRP) has a central inhibitory action on the hypothalamic-pituitary-thyroid (HPT) axis; comparisons between the effect of AGRP and neuropeptide Y on energy homeostasis and the HPT axis. Endocrinology 143:3846–3853

    Article  CAS  PubMed  Google Scholar 

  • Freake HC, Govoni KE, Guda K, Huang C, Zinn SA (2001) Actions and interactions of thyroid hormone and zinc status in growing rats. J Nutr 13:1135–1141

    Google Scholar 

  • Hartoma TR, Sotaniemi EA, Määttänen J (1979) Effect of zinc on some biochemical indices of metabolism. Nutr Metab 23:294–300

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Kamegai J, Tamura H, Shimizu T, Sugihara H, Oikawa S (2003) Hypothalamic neuropeptide Y/Y1 receptor pathway activated by a reduction in circulating leptin, but not by an increase in circulating ghrelin, contributes to hyperphagia associated with triiodothyronine-induced thyrotoxicosis. Neuroendocrinology 78:321–330

    Article  CAS  PubMed  Google Scholar 

  • Johnson S (2001) Micronutrient accumulation and depletion in schizophrenia, epilepsy, autism and Parkinson’s disease? Med Hypotheses 56:641–645

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Kim BY, Mok JO, Kim CH, Kang SK, Jung CH (2015) Serum concentrations of ghrelin and leptin according to thyroid hormone condition, and their correlations with insulin resistance. Endocrinol Metab 30:318–325

    Article  Google Scholar 

  • Lee RG, Rains TM, Tovar-Palacio C, Beverly JL, Shay NF (1998) Zinc deficiency increases hypothalamic neuropeptide Y and neuropeptide Y mRNA levels and does not block neuropeptide Y-induced feeding in rats. J Nutr 128:1218–1236

    CAS  PubMed  Google Scholar 

  • Michalkiewicz M, Suzuki M (1994) Adenohypophyseal vasoactive intestinal peptide and neuropeptide Y responses to hypothyroidism are abolished after anterolateral differentation of the hypothalamus. Neuroendocrinology 59:85–91

    Article  CAS  PubMed  Google Scholar 

  • Mocchegiani E, Bulian D, Santarelli L, Tibaldi A, Muzzioli M, Pierpaoli W, Fabris N (1994) The immuno-reconstituting effect of melatonin or pineal grafting and its relation to zinc pool in aging mice. J Neuroimmunol 53:189–201

    Article  CAS  PubMed  Google Scholar 

  • Mocchegiani E, Bulian D, Santarell L, Tibaldi A, Muzzioli M, Lesnikov V, Pierpaoli W, Fabris N (1996) The zinc pool is involved in the immune-reconstituting effect of melatonin in pinealectomized mice. J Pharmacol Exp Ther 277:1200–1208

    CAS  PubMed  Google Scholar 

  • Oge A, Bayraktar F, Saygili F, Guney E, Demir S (2005) TSH influences serum leptin levels independent of thyroid hormones in hypothyroid and hyperthyroid patients. Endocr J 52:213–217

    Article  CAS  Google Scholar 

  • Oliveira Md, de Síbio MT, Olimpio RM, Moretto FC, Luvizotto Rde A, Nogueira CR (2015) Triiodothyronine modulates the expression of leptin and adiponectin in 3T3-L1 adipocytes. Einstein 13:72–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Olusi S, Al-Awadhi A, Abiaka C, Abraham M, George S (2003) Serum copper levels and not zinc are positively associated with serum leptin concentrations in the healthy adult population. Biol Trace Elem Res 91:137–144

    Article  CAS  PubMed  Google Scholar 

  • Ott ES, Shay NF (2001) Zinc deficiency reduces leptin gene expression and leptin secretion in rat adipocytes. Exp Biol Med 226:841–846

    CAS  Google Scholar 

  • Pekary AE, Lukaski HC, Mena I, Hershman JM (1991) Processing of TRH precursor peptides in rat brain and pituitary is zinc dependent. Peptides 12:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Pétervári E, Balaskó M, Jech-Mihálffy A, Székely M (2005) Hyperphagia of hyperthyroidism: is neuropeptide Y involved ? Regul Pept 131:103–110

    Article  PubMed  Google Scholar 

  • Rom-Bugoslavskaia ES, Bondarenko LA (1984) Effect of deficiency and excess of thyroid hormones in the body on indolamine metabolism in the rat epiphysis cerebri. Probl Endokrinol 30:82–85

    CAS  Google Scholar 

  • Safai-Kutti S (1990) Oral zinc supplementation in anorexia nervosa. Acta Psychiatr Scand Suppl 361:14–17

    Article  CAS  PubMed  Google Scholar 

  • Selvais PL, Labuche C, Nguyen XN, Ketelslegers JM, Denef JF, Maiter DM (1997) Cyclic feeding behaviour and changes in hypothalamic galanin and neuropeptide Y gene expression induced by zinc deficiency in the rat. J Neuroendocrinol 9:55–62

    Article  CAS  PubMed  Google Scholar 

  • Tallman DL, Taylor CG (2003) Effects of dietary fat and zinc on adiposity, serum leptin and adipose fatty acid composition in C57BL/6 J mice. J Nutr Biochem 14:17–23

    Article  CAS  PubMed  Google Scholar 

  • Tohma Y, Akturk M, Altinova A, Yassibas E, Cerit ET, Gulbahar O, Arslan M, Sanlier N, Toruner F (2015) Circulating Levels of Orexin-A, Nesfatin-1, Agouti-Related Peptide, and Neuropeptide Y in Patients with Hyperthyroidism. Thyroid 25:776–783

    Article  CAS  PubMed  Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    CAS  PubMed  Google Scholar 

  • Varela L, Martínez-Sánchez N, Gallego R, Vázquez MJ, Roa J, Gándara M, Schoenmakers E, Nogueiras R, Chatterjee K, Tena-Sempere M, Diéguez C, López M (2012) Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J Pathol 227:209–222

    Article  CAS  PubMed  Google Scholar 

  • Wada L, King JC (1986) Effect of low zinc intakes on basal metabolic rate, thyroid hormones and protein utilization in adult men. J Nutr 116:1045–1053

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by a grant from the Selcuk University, Scientific Research Council (Grant number is 2002086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasim Mogulkoc.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baltaci, A.K., Mogulkoc, R. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc. Biochem Genet 55, 223–233 (2017). https://doi.org/10.1007/s10528-017-9791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-017-9791-z

Keywords

Navigation