Biochemical Genetics

, Volume 55, Issue 2, pp 105–123 | Cite as

Genetics of Congenital Heart Disease: Past and Present

  • Iolanda Muntean
  • Rodica Togănel
  • Theodora Benedek


Congenital heart disease is the most common congenital anomaly, representing an important cause of infant morbidity and mortality. Congenital heart disease represents a group of heart anomalies that include septal defects, valve defects, and outflow tract anomalies. The exact genetic, epigenetic, or environmental basis of congenital heart disease remains poorly understood, although the exact mechanism is likely multifactorial. However, the development of new technologies including copy number variants, single-nucleotide polymorphism, next-generation sequencing are accelerating the detection of genetic causes of heart anomalies. Recent studies suggest a role of small non-coding RNAs, micro RNA, in congenital heart disease. The recently described epigenetic factors have also been found to contribute to cardiac morphogenesis. In this review, we present past and recent genetic discoveries in congenital heart disease.


Congenital heart disease Copy number variants Single-nucleotide polymorphism Next-generation sequencing Micro RNA Epigenetic 



The present work was partially supported by the Research Project No 27/11.12.2013 and financed by University of Medicine and Pharmacy, Tîrgu Mureş, Romania.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ackerman C, Locke AE, Feingold E, Reshey B, Espana K, Thusberg J, Mooney S, Bean LJH, Dooley KJ, Cua CL, Reeves RH, Sherman SL, Maslen CL (2012) An excess of deleterious variants in VEGF-A pathway genes in Down-syndrome-associated atrioventricular septal defects. Am J Hum Genet 91:646–659PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alagille D, Odievre M, Gautier M, Dommergues JP (1975) Hepatic ductular hypoplasia associated with characteristic faces, vertebral malformations, retarded physical, mental and sexual development, and cardiac murmur. J Pediat 86:63–71PubMedCrossRefGoogle Scholar
  3. Andelfinger G (2014) Next-generation sequencing in congenital heart disease: do new brooms sweep clean? J Am Coll Cardiol 64:2507–2509PubMedCrossRefGoogle Scholar
  4. Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H, Tanaka Y, Filocamo M, Kato K, Suzuki Y, Kure S, Matsubara Y (2005) Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 37:1038–1040PubMedCrossRefGoogle Scholar
  5. Aoki Y, Niihori T, Banjo T, Okamoto N, Mizuno S, Kurosawa K, Ogata T, Takada F, Yano M, Ando T, Hoshika T, Barnett C et al (2013) Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome. Am J Hum Genet 93:173–180PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bajpai R, Chen DA, Rada-Iglesias A, Zhang J, Xiong Y, Helms J, Chang CP, Zhao Y, Swigut T, Wysocka J (2010) CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature 463:958–962PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  8. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, Grayzel D, Kroumpouzou E, Traill TA, Leblanc-Straceski J, Renault B, Kucherlapati R, Seidman JG, Seidman CE (1997) Mutations in human TBX5 cause limb and cardiac malformation in Holt–Oram syndrome. Nat Genet 15:30–35PubMedCrossRefGoogle Scholar
  9. Battaglia A, Hoyme HE, Dallapiccola B, Zackai E, Hudgins L, McDonald-McGinn D, Bahi-Buisson N, Romano C et al (2008) Further delination of deletion 1p36 syndrome in 60 patients: a recognizable phenotype and common cause of developmental delay and mental retardation. Pediatrics 121(2):404–410PubMedCrossRefGoogle Scholar
  10. Bittel DC, Kibiryeva N, Marshall JA et al (2014) MicroRNA-421 dysregulation is associated with tetralogy of Fallot. Cells 3:713–723PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blue GM, Kirk EP, Giannoulatou E et al (2014) Targeted next-generation sequencing identifies pathogenic variants in familial congenital heart disease. J Am Coll Cardiol 64:2498–2506PubMedCrossRefGoogle Scholar
  12. Carey JC (2010) Trisomy 18 and trisomy 13 syndromes. In: Cassidy SB, Allanson JE (eds) Management of genetic syndromes, 3rd edn. Wiley, New York, pp 807–823CrossRefGoogle Scholar
  13. Catalucci D, Latronico MV, Condorelli G (2008) MicroRNAs control gene expression: importance for cardiac development and pathophysiology. Ann N Y Acad Sci 1123:20–29PubMedCrossRefGoogle Scholar
  14. Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24:8467–8476PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chavan AV, Somani RR (2010) HDAC inhibitors–new generation of target specific treatment. Mini Rev Med Chem 10:1263–1276PubMedCrossRefGoogle Scholar
  16. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P et al (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100:10794–10799PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cirstea IC, Kutsche K, Dvorsky R, Gremer L, Carta C, Horn D, Roberts AE, Lepri F, Merbitz-Zahradnik T, Konig R, Kratz CP, Pantaleoni F et al (2010) A restricted spectrum of NRAS mutations cause Noonan syndrome. Nat Genet 42:27–29PubMedCrossRefGoogle Scholar
  18. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Ann Rev Biochem 78:273–304PubMedCrossRefGoogle Scholar
  19. Collins RT, Kaplan P, Somes GW, Rome JJ (2010) Long-term outcomes of patients with cardiovascular abnormalities and William syndromes. Am J Cardiol 105(6):874–878PubMedCrossRefGoogle Scholar
  20. Coppede F (2015) The genetics of folate metabolism and maternal risk of birth of a child with Down syndrome and associated congenital heart defects. Front Genet 25(6):223. doi: 10.3389/fgene.2015.00223 Google Scholar
  21. Dasgupta C, Martinez AM, Zuppan CW, Shah MM, Bailey LL, Fletcher WH (2001) Identification of connexin43 (alpha-1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res 479:173–186PubMedCrossRefGoogle Scholar
  22. Digilio MC, Conti E, Sarkozy A, Mingarelli R, Dottorini T, Marino B, Pizzuti A, Dallapiccola B (2002) Grouping of multiple-lentigines/LEOPARD and Noonan syndromes on the PTPN11 gene. Am J Hum Genet 71:389–394PubMedPubMedCentralCrossRefGoogle Scholar
  23. Eldadah ZA, Hamosh A, Biery NJ, Montgomery RA, Duke M, Elkins R, Dietz HC (2001) Familial tetralogy of Fallot caused by mutation in the jagged1 gene. Hum Mol Genet 10:163–169PubMedCrossRefGoogle Scholar
  24. Ewart AK, Jin W, Atkinson D, Morris CA, Keating MT (1994) Supravalvular aortic stenosis associated with a deletion disrupting the elastin gene. J Clin Invest 93:1071–1077PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fahed AC, Gelb BD, Seidman JG, Seidman CE (2013) Genetics of congenital heart disease the glass half empty. Circ Res 112:707–720PubMedCrossRefGoogle Scholar
  26. Feng Q, Song W, Lu X, Hamilton JA, Lei M, Peng T, Yee SP (2002) Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation 106:873–879PubMedCrossRefGoogle Scholar
  27. Freeman SB, Bean LH, Allen EG et al (2008) Ethnicity, sex, and the incidence of congenital heart defects: a report from the National Down Syndrome Project. Genet Med 10:173–180PubMedCrossRefGoogle Scholar
  28. Garg V, Kathiriya IS, Barnes R et al (2003) GATA mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447PubMedCrossRefGoogle Scholar
  29. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274PubMedCrossRefGoogle Scholar
  30. Glissen C, Hoischen A, Brunner HG, Veltman JA (2012) Disease gene identification strategies for exome sequencing European. J Hum Genet 20:490–497CrossRefGoogle Scholar
  31. Goldmuntz E, Geiger E, Benson DW (2001) NKX2.5 mutations in patients with tetralogy of Fallot. Circulation 104:2565–2568PubMedCrossRefGoogle Scholar
  32. Gotzsche CO, Kraq-Olsen B, Nielsen J, Sorensen KE, Kristensen BO (1994) Prevalence of cardiovascular malformations and association with cariotypes in Turner’s syndrome. Arch Dis Child 71(5):433–436PubMedPubMedCentralCrossRefGoogle Scholar
  33. Griffin HR, Hall DH, Topf A et al (2009) Genetic variation in VEGF does not contribute significantly to the risk of congenital cardiovascular malformation. PLoS ONE 4(3):e4978PubMedPubMedCentralCrossRefGoogle Scholar
  34. Han P, Hang CT, Yang J, Chang CP (2011) Chromatin remodeling in cardiovascular development and physiology. Circ Res 108(3):378–396PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E et al (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466:62–67PubMedPubMedCentralCrossRefGoogle Scholar
  36. Heathcote K, Braybrook C, Abushaban L, Guy M, Khetyar ME, Patton MA, Carter ND, Scambler PJ, Syrris P (2005) Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet 14:585–593PubMedCrossRefGoogle Scholar
  37. Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463(7280):474–484PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900PubMedCrossRefGoogle Scholar
  39. Holt M, Oram S (1960) Familial heart disease with skeletal malformations. Br Heart J 22:236–242PubMedPubMedCentralCrossRefGoogle Scholar
  40. Horrillo A, Pezzolla D, Fraga MF, Aguilera Y, Salguero-Aranda C, Tejedo JR et al (2013) Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment. Cell Death Dis 4(4):e570PubMedPubMedCentralCrossRefGoogle Scholar
  41. Iafrate A et al (2004) Detection of large scale variation in the human genome. Nat Genet 36(9):949–951PubMedCrossRefGoogle Scholar
  42. Jerome LA, Papaioannou VWE (2001) DiGeorge syndrome phenotype in mice mutant for the T-Box gene, Tbx1. Nat Genet 27:286–291PubMedCrossRefGoogle Scholar
  43. Junker R, Kotthoff S, Vielhaber H, Halimeh S, Kosch A, Koch HG et al (2001) Infant methylenetetrahydrofolate reductase 677TT genotype is a risk factor for congenital heart disease. Cardiovasc Res 51(2):251–254PubMedCrossRefGoogle Scholar
  44. Kamath BM, Spinner NB, Emerick KM, Chudley AE, Booth C, Piccoli DA, Krantz ID (2004) Vascular anomalies in Alagille syndrome: a significant cause of morbidity and mortality. Circulation 109:1354–1358PubMedCrossRefGoogle Scholar
  45. Karkera JD, Lee JS, Roessler E, Banerjee-Basu S, Ouspenskaia MV, Mez J, Goldmuntz E, Bowers P, Towbin J, Belmont JW, Baxevanis AD, Schier AF, Muenke M (2007) Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet 81:987–994PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R, Mackay JP, Waddell LB et al (2007) Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 81:280–291PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kobayashi J, Sano S, Oh H (2015) Epigenetic modification in congenital heart diseases by using stem cell technologies. Stem Cell Epigenet 2:e550. doi: 10.14800/sce.550 Google Scholar
  48. Kodo K, Nishizawa T, Furutani M, Arai S, Yamamura E, Joo K, Takahashi T, Matsuoka R, Yamagishi H (2009) GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci 106:13933–13938PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kuehl K, Loffredo C, Lammer EJ, Iovannisci DM, Shaw GM (2010) Association of congenital cardiovascular malformations with 33 single nucleotide polymorphisms of selected cardiovascular disease-related genes. Birth Defects Res A 88(2):101–110Google Scholar
  50. Lalani SR, Safiullah AM, Molinari LM, Fernbach SD, Martin DM, Belmont JW (2004) SEMA3E mutation in a patient with CHARGE syndrome. J Med Genet 41:e94PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lalani SR, Shaw C, Wang X, Patel A, Patterson LW, Kolodziejska K et al (2013) Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities. Eur J Hum Genet 21:173–181PubMedCrossRefGoogle Scholar
  52. Lambrechts D, Devriendt K, Driscoll DA et al (2005) Low expression VEGF haplotype increases the risk for tetralogy of Fallot: a family based association study. J Med Genet 42(6):519–522PubMedPubMedCentralCrossRefGoogle Scholar
  53. Li M, Zhang J (2015) Circulating MicroRNAs: potential and emerging biomarkers for diagnosis of cardiovascular and cerebrovascular diseases. Biomed Res Int 2015:730535. doi: 10.1155/2015/730535 PubMedPubMedCentralGoogle Scholar
  54. Li DY, Toland AE, Boak BB et al (1997) Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet 6(7):1021–1028PubMedCrossRefGoogle Scholar
  55. Li D, Ji L, Liu L et al (2014) Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS ONE 9:e106318PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG (2004) Baf60c is essential for function of BAF chromatin remodeling complexes in heart development. Nature 432(7013):107–112PubMedCrossRefGoogle Scholar
  57. Lin X, Huo Z, Liu X, Zhang Y, Li L, Zhao H, Yan B, Liu Y, Yang Y, Chen YH (2010) A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet 55:662–667PubMedCrossRefGoogle Scholar
  58. Loukanov T, Hoss K, Klimpel H, Arnold R, Sebening C, Karck M, Gorenflo M (2011) Endothelial nitric oxide synthase gene polymorphism (Glu298Asp) and acute pulmonary hypertension post cardiopulmonary bypass in children with congenital cardiac diseases. Cardiol Young 21(2):161–169PubMedCrossRefGoogle Scholar
  59. Maitra M, Koenig SN, Srivastava D, Garg V (2010) Identification of GATA6 sequence variants in patients with congenital heart defects. Pediat Res 68:281–285PubMedPubMedCentralCrossRefGoogle Scholar
  60. Martin LJ, Pilipenko V, Kaufman KM, Cripe L, Kottyan LC, Keddache M et al (2014) Whole exome sequencing for familial bicuspid aortic valve identifies putative variants. Circ Cardiovasc Genet 7:677–683PubMedCrossRefGoogle Scholar
  61. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the Notch signaling pathway. Am J Hum Genet 79:169–173PubMedPubMedCentralCrossRefGoogle Scholar
  62. McElhinney DB, Geiger E, Blinder J, Benson DW, Goldmuntz E (2003) NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 42:1650–1655PubMedCrossRefGoogle Scholar
  63. Micale L, Turturo MG, Fusco C, Augello B, Jurado LAP, Izzi C, Digilio MC, Milani D, Lapi E, Zelante L, Merla G (2010) Identification and characterization of seven novel mutations of elastin gene in a cohort of patients affected by supravalvular aortic stenosis. Eur J Hum Genet 18:317–323PubMedCrossRefGoogle Scholar
  64. Mills RE et al (2011) Mapping copy number variation by population scale genome sequencing. Nature 470(7332):59–65PubMedPubMedCentralCrossRefGoogle Scholar
  65. Mohapatra B, Casey B, Li H, Ho-Dawson T, Smith L, Fernbach SD, Molinari L, Niesh SR, Jefferies JL, Craigen WJ, Towbin JA, Belmont JW, Ware SM (2009) Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet 18(5):861–871PubMedGoogle Scholar
  66. Muncke N, Jung C, Rudiger H, Ulmer H, Roeth R, Hubert A, Goldmuntz E, Driscoll D, Goodship J, Schon K, Rappold G (2003) Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 108:2843–2850PubMedCrossRefGoogle Scholar
  67. Musewe NN, Alexander DJ, Teshima I et al (1990) Echocardiographic evaluation of the spectrum of cardiac anomalies associated with trisomy 13 and trisomy 18. J Am Coll Cardiol 15:673–677PubMedCrossRefGoogle Scholar
  68. Niihori T, Aoki Y, Narumi Y, Neri G, Cave H, Verloes A, Okamoto N, Hennekam RCM, Gillessen-Kaesbach G, Wieczorek D, Kavamura MI, Kurosawa K et al (2006) Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat Genet 38:294–296PubMedCrossRefGoogle Scholar
  69. Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ et al (2009) A histone H3 lysine 36 trimethyltransferase links Nk2–5 to Wolf-Hirschhorn syndrome. Nature 460:287–291PubMedCrossRefGoogle Scholar
  70. Pandit B, Sarkozy A, Pennacchio LA, Carta C, Oishi K, Martinelli S, Pogna EA, Schackwitz W, Ustaszewska A, Landstrom A, Bos JM, Ommen SR et al (2007) Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet 39(8):1007–1012PubMedCrossRefGoogle Scholar
  71. Park CY, Pierce SA, von Drehle M, Ivey KN, Morgan JA, Blau HM et al (2010) skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Pro Natl Acad Sci USA 107(48):20750–20755CrossRefGoogle Scholar
  72. Peng T, Wang L, Zhou SF, Li X (2010) Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease. Genetica 138(11–12):1231–1240PubMedCrossRefGoogle Scholar
  73. Pierpoint ME, Basson CT, Benson DW Jr, Gelb BC, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb CL (2007) AHA scientific statement. Genetic basis for congenital heart defects: current knowledge. A scientific statement from the American Heart Association Congenital Cardiac Defects Committe, Council on Cardiovascular Disease in the young: endorsed by the american academy of pediatrics. Circulation 115:3015–3038CrossRefGoogle Scholar
  74. Pizzuti A, Sarkozy A, Newton AL, Conti E, Flex E, Digilio MC, Amati F, Gianni D, Tandoi C, Marino B, Crossley M, Dallapiccola B (2003) Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Mutat 22:372–377PubMedCrossRefGoogle Scholar
  75. Postma AV, Bezzina CR, Christoffels VM (2016) Genetics of congenital heart disease: the contribution of the noncoding regulatory genome. J Hum Genet 61:13–19PubMedCrossRefGoogle Scholar
  76. Rajagopal SK, Ma Q, Obler D, Shen J, Manichaikul A, Tomita-Mitchell A, Boardman K, Briggs C et al (2012) An excess of deleterious variants in VEGF-A pathway genes in Down-syndrome-associated atrioventricular septal defects. Am J Hum Genet 91:646–659CrossRefGoogle Scholar
  77. Rauch R, Hofbeck M, Zweier C, Koch A, Zink S, Trautmann U, Hoyer J, Kaulitz R, Singer H, Rauch A (2010) Comprehensive genotype-phenotype analysis in 230 patients with tetralogy of Fallot. J Med Genet 47:321–331PubMedCrossRefGoogle Scholar
  78. Redon R, Ishikawa S, Fitch KR et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–454PubMedPubMedCentralCrossRefGoogle Scholar
  79. Richards AA, Garg V (2010) Genetics of congenital heart disease. Curr Card Rev 6:91–97CrossRefGoogle Scholar
  80. Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, Li L, Yassin Y, Tamburino AM, Neel BG, Kucherlapati RS (2007) Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat Genet 39:70–74PubMedCrossRefGoogle Scholar
  81. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657PubMedCrossRefGoogle Scholar
  82. Rocha R, Soro I, Leitao A, Silva ML, Leao M (2012) Moyamoya vascular pattern in Alagille syndrome. Pediat Neurol 47:125–128PubMedCrossRefGoogle Scholar
  83. Rodriguez-Viciana P, Tetsu O, Tidyman WE, Estep AL, Conger BA, Santa Cruz M, McCormick F, Rauen KA (2006) Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science 311:1287–1290PubMedCrossRefGoogle Scholar
  84. Romano AA, Allanson JE, Dahlgren J et al (2010) Noonan syndrome: clinical features, diagnosis, and management guideline. Pediatrics 126:746–759PubMedCrossRefGoogle Scholar
  85. Rossaak JI, Van Rij AM, Jones GT, Harris EL (2000) Association of the 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor-1 with abdominal aortic aneurysms. J Vasc Surg 31(5):1026–1032PubMedCrossRefGoogle Scholar
  86. Ryan AK, Goodship JA, Wilson DI et al (1997) Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European collaborative study. J Med Genet 34:798–804PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sarkozy A, Carta C, Moretti S, Zampino G, Digilio MC, Pantaleoni F, Scioletti AP, Esposito G, Cordeddu V, Lepri F, Petrangeli V, Dentici ML et al (2009) Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes: molecular diversity and associated phenotypic spectrum. Hum Mutat 30:695–702PubMedPubMedCentralCrossRefGoogle Scholar
  88. Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111PubMedCrossRefGoogle Scholar
  89. Schubbert S, Zenker M, Rowe SL, Boll S, Klein C, Bollag G, van der Burgt I, Musante L, Kalscheuer V, Wehner LE, Nguyen H, West B, Zhang KYJ, Sistermans E, Rauch A, Niemeyer CM, Shannon K, Kratz CP (2006) Germline KRAS mutations cause Noonan syndrome. Nat Genet 38:331–336PubMedCrossRefGoogle Scholar
  90. Schulz AL, Albrecht B, Arici C, van der Burgt I, Buske A, Gillessen-Kaesbach G, Heller R, Horn D, Hubner CA, Korenke GC, Konig R, Kress W et al (2008) Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome. Clin Genet 73:62–70PubMedCrossRefGoogle Scholar
  91. Sebat J et al (2004) Large-scale copy number polymorphism in the human genome. Science 305(5683):525–528PubMedCrossRefGoogle Scholar
  92. Serra-Juhe C, Cusco I, Homs A, Flores R, Toran N, Perez-Jurado LA (2015) DNA methylation abnormalities in congenital heart disease. Epigenetics 10(2):167–177. doi: 10.1080/15592294.2014.998536 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Shaw GM, Iovannisci DM, Yang W, Finnell RH, Carmichael SL, Cheng S et al (2005) Risks of human conotruncal heart defects associated with 32 single nucleotide polymorphisms of selected cardiovascular disease-related genes. Am J Med Genet A 138(1):21–26PubMedCrossRefGoogle Scholar
  94. Sletten LJ, Pierpont MEM (1996) Variation in severity of cardiac disease in Holt–Oram syndrome. Am J Med Genet 65:128–132PubMedCrossRefGoogle Scholar
  95. Smith T, Rajakaruna C, Caputo M, Emanueli C (2015) MicroRNAs in congenital heart disease. Ann Transl Med 3(21):333. doi: 10.3978/j.issn.2305-5839.2015.12.25 PubMedPubMedCentralGoogle Scholar
  96. Soemedi R, Wilson IJ, Bentham J et al (2012) Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 91:489–501PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sorensen KM, El-Segaler M, Fernlund E, Errami A, Bouvagnet P, Nehme N et al (2012) Screening of congenital heart disease patients using multiplex ligation-dependent probe amplification: early diagnosis of syndromic patients. Am J Med Genet 158A(4):720–725PubMedCrossRefGoogle Scholar
  98. Springett A, Wellesley D, Greenlees R, Loane M, Addor MC, Arriola L, Bergman J, Cavero-Carbonell C et al (2015) Congenital anomalies associated with trisomy 18 or trisomy 13: a register-based study in 16 European countries, 2000–2001. Am J Med Genet A 167(12):3062–3069CrossRefGoogle Scholar
  99. Stallmeyer B, Fenge H, Nowak-Gottl U, Schulze-Bahr E (2010) Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease. Clin Genet 78:533–540PubMedCrossRefGoogle Scholar
  100. Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Ann Rev Med 61:437–455PubMedCrossRefGoogle Scholar
  101. Sudmant PH et al (2010) Diversity of human copy number variation and multycopy genes. Science 330(6004):641–646PubMedPubMedCentralCrossRefGoogle Scholar
  102. Sybert VP, McCauley E (2004) Turner’s syndrome. N Engl J Med 351:1227–1238PubMedCrossRefGoogle Scholar
  103. Takeuchi JK, Lou X, Alexander JM, Sugizaki H, Delgado-Olguin P, Holloway AK et al (2011) Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nat Commun 2:187PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tartaglia M, Mehler EL, Goldberg R, Zampino G, Brunner HG, Kremer H, van der Burgt I, Crosby AH, Ion A, Jeffery S, Kalidas K, Patt MA, Kucherlapati RS, Gelb BD (2001) Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 29:465–468PubMedCrossRefGoogle Scholar
  105. Ta-Shma A, El-lahham N, Edvardson S, Stepensky P, Nir A, Perles Z, Gavri S, Golender J, Yaakobi-Simhayoff N, Shaag A, Rein AJJT, Elpeleg O (2014) Conotruncal malformations and absent thymus due to a deleterious NKX2-6 mutation. J Med Genet 51:268–270PubMedCrossRefGoogle Scholar
  106. Tomita-Mitchell A, Maslen CL, Morris CD, Garg V, Goldmuntz E (2007) GATA4 sequence variants in patients with congenital heart defects. J Med Genet 44:779–783PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tomita-Mitchell A, Mahnke DK, Struble CA, Tuffnell ME, Stamm KD, Hidestrand M et al (2012) Human gene copy number spectra analysis in congenital heart malformations. Physiol Genom 44:518–541CrossRefGoogle Scholar
  108. Van Beynum IM, den Heijer M, Blom HJ, Kapusta L (2007) The MTHFR 677C-> T polymorphism and the risk of congenital heart defects: a literature review and meta-analysis. Q J Med 100(12):743–753CrossRefGoogle Scholar
  109. Van Beynum IM, Mooji C, Kapusta L, Heil S, den Heijer M, Blom HJ (2008) Common 894G > T single nucleotide polymorphism in the gene coding for endothelial nitric oxide synthase (eNOS) and risk of congenital heart defects. Clin Chem Lab Med 46(10):1369–1375PubMedGoogle Scholar
  110. Van Praagh S, Truman T, Firpo A, Bang-Rodrigo A, Fried R, McManus B, Engle MA, Van Praagh R (1989) Cardiac malformations in trisomy-18: a study of 41 postmortem cases. JACC 13(7):1586–1597PubMedCrossRefGoogle Scholar
  111. Waldron L, Steimle JD, Greco TM, Gomez NC, Dorr KM, Kweon J, Temple B et al (2016) The cardiac TBX% interactome reveals a chromatin remodeling network essential for cardiac septation. Dev Cell 36(3):262–275PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang J, Xin YF, Liu XY, Liu ZM, Wang XZ, Yang YQ (2011) A novel NKX2-5 mutation in familial ventricular septal defect. Int J Mol Med 27:369–375. doi: 10.3892/ijmm.2010.585 PubMedGoogle Scholar
  113. Wang W, Hou Z, Wang C, Wei C, Li Y, Jiang L (2013) Association between 5,10- methylenetetrahydrofolate reductase (MTHFR) polymorphisms and congenital heart disease: a meta-analysis. Meta Gene 1:109–125PubMedPubMedCentralCrossRefGoogle Scholar
  114. Ware SM, Harutyunyan KG, Belmont JW (2006) Heart defects in X-linked heterotaxy: evidence for a genetic interaction of Zic3 with the nodal signaling pathway. Dev Dyn 235:1631–1637PubMedCrossRefGoogle Scholar
  115. Xie J, Yi L, Xu ZF et al (2007) VEGF C-634G polymorphism is associated with protection from isolated ventricular septal defect: case-control and TDT studies. Eur J Hum Genet 15(12):1246–1251PubMedCrossRefGoogle Scholar
  116. Xie W, Zhou L, Chen Y, Ni B (2016) Circulating microRNAs as potential biomarkers for diagnosis of congenital heart defects. World J Emerg Med 7(2):85–89PubMedPubMedCentralCrossRefGoogle Scholar
  117. Yanagawa B, Lovren F, Pan Y et al (2012) miRNA-141 is a novel regulator of BMP-2-mediated calcification in aortic stenosis. J Thorac Cardiovasc Surg 144:256–262PubMedCrossRefGoogle Scholar
  118. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD et al (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–223PubMedPubMedCentralCrossRefGoogle Scholar
  119. Zhang W, Li X, Shen A, Jiao W, Guan X, Li Z (2008) GATA4 mutations in 486 Chinese patients with congenital heart disease. Eur J Med Genet 51:527–535PubMedCrossRefGoogle Scholar
  120. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220. doi: 10.1038/nature03817 PubMedCrossRefGoogle Scholar
  121. Zhu S, Cao L, Zhu J et al (2013) Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta 424:66–72PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Iolanda Muntean
    • 1
  • Rodica Togănel
    • 1
  • Theodora Benedek
    • 2
  1. 1.Institute of Cardiovascular Diseases and Transplantation, Clinic of Pediatric CardiologyUniversity of Medicine and Pharmacy Tîrgu MureşTirgu MuresRomania
  2. 2.Clinic of CardiologyUniversity of Medicine and Pharmacy Tîrgu MureşTirgu MuresRomania

Personalised recommendations