Skip to main content
Log in

Genetic Resources of Pinus cembra L. Marginal Populations from the Tatra Mountains: Implications for Conservation

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The levels of variation and genetic diversity of offspring of randomly selected old mother trees in four marginal populations of the Pinus cembra in the Tatra Mountains were analyzed. Twenty-four isozyme loci were analyzed (nine of them were monomorphic). The analyzed offspring of Swiss stone pine showed highly diverse polymorphism at the levels of both provenances and individual families (the offspring of one mother tree). The mean observed heterozygosity was low and very similar to that of other Carpathian populations. The genetic diversity (mean F st = 11%) between the four provenances was higher than that observed for populations from the Carpathian Mountains and the Alps. The genetic uniqueness (high genetic richness and diversity) of the analyzed Tatra populations of P. cembra as a whole and particular tree stands requires protection because of their valuable contribution to the species total genetic diversity (gene pool).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Altukhov YP (1991) The role of balancing selection and overdominance in maintaining allozyme polymorphism. Genetics 85(1):79–90

    Google Scholar 

  • Belokon MM, Belokon YS, Politov DV, Altukhov YP (2005) Allozyme polymorphism of Swiss stone pine Pinus cembra L. in mountain populations of the Alps and the Eastern Carpathians. Russ J Genet 41:1268–1280

    Article  CAS  Google Scholar 

  • Bergman F, Hattemer HH (1995) Isozyme gene loci and their allelic variation in Pinus sylvestris L. and Pinus cembra L. Silvae Genet 44:5–6

    Google Scholar 

  • Bergmann F, Gregorius H-R (1993) Ecogeographical distribution and thermostability of isocitrate dehydrogenase (IDH) alloenzymes un European silver fir (Abies alba). Biochem Sys Ecol 21:597–605

    Article  CAS  Google Scholar 

  • Casalegno S, Amatulli G, Camia A, Nelson A, Pekkarinen A (2010) Vulnerability of Pinus cembra L. in the Alps and the Carpathian mountains under present and future climates. Forest Ecol Manag 259:750–761

    Article  Google Scholar 

  • Cheliak WM and Pitel J (1984) Techniques for starch gel electrophoresis of enzymes from forest tree species. Information Report PI-X-42 Petawawa National Forestry Institute

  • Chmiel J (1996) Naturalny zasięg a rozsiedlenie limby Pinus cembra w Tatrach Polskich. Przyroda TPN a człowiek. T 2, Biologia. Kraków-Zakopane: 62–73 (in Polish)

  • Chmiel J (2004) Tatrzańskie reliktowe bory limbowe. Tatry 2: 46–47 (in Polish)

  • Chmiel J, Milewski T, Polok K (2008) Protection of native Swiss stone pine Pinus cembra L. gene pool in the Tatras in the light of molecular studies. Roczniki Bieszczadzkie 16:215–232 (in Polish)

    Google Scholar 

  • Conkle MT, Hodgskiss PD, Nunnally LB, Hunte SC (1982) Starch gel electrophoresis of conifer seeds: a laboratory manual. USDA Serv. Tech. Rep. PSW-64

  • Dalstein L, Torti X, Le Thiec D, Dizengremel P (2003) Physiological study of declining Pinus cembra (L.) trees in southern France. Trees-Struct Funct 16(4–5):299–305

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol 39:783–791

    Article  Google Scholar 

  • Fernández-Manjarrés JF, Sork VL (2005) Mating patterns of a subdivided population of the Andean oak (Quercus humboldtii Bonpl., Fagaceae). J Hered 96:635–643

    Article  Google Scholar 

  • Garcia C, Arroyo JM, Godoy JA, Jordano P (2005) Mating patterns, pollen dispersal, and the ecological maternal neighbourhood in a Prunus mahaleb L. population. Mol Ecol 14:1821–1830

    Article  CAS  PubMed  Google Scholar 

  • Goncharenko GG, Padutov VE, Silin A (1992) Population structure, gene diversity and population differentiation in natural populations of Cedar pines (Pinus subsect Cembrae, Pinaceae) in the USSR. Plant Syst Evol 182:121–134

    Article  CAS  Google Scholar 

  • Gugerli F, Rüegg M, Vendramin GG (2009) Gradual decline in genetic diversity in Swiss stone pine populations (Pinus cembra) across Switzerland suggests postglacial re-colonization into the Alps from a common eastern glacial refugium. Bot Hel 119:13–22

    Article  Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Höhn M, Abran P, Vendramin GG (2005) Genetic analysis of Swiss pine populations (Pinus cembra L. subsp. cembra) from the Carpathians using chloroplast microsatellites. Acta Silv Lign Hung 1:39–47

    Google Scholar 

  • Höhn M, Gugerli F, Abran P, Bisztray G, Buonamici A, Cseke K, Hufnagel L, Quintela-Sabaris C, Sebastiani F, Vendramin GG (2009) Variation in the chloroplast DNA of Swiss stone pine (Pinus cembra L.) reflects contrasting post-glacial history of populations from the Carpathians and the Alps. J Biogeogr 36:1798–1806

    Article  Google Scholar 

  • Höhn M, Hufnagel L, Cseke K, Vendramin GG (2010) Current range characterisitics of Swiss stone pine (Pinus cembra L.) along the Carpathians revealed by chloroplast SSR markers. Acta Biol Hung 61:61–67

    Article  PubMed  Google Scholar 

  • Jain SK, Workman PL (1967) Generalized F-statistics and the theory of inbreeding and selection. Nature 214:674–678

    Article  CAS  PubMed  Google Scholar 

  • Karkkainen K, Koski V, Savolainen O (1996) Geographical variation in the inbreeding depression of Scots pine. Evol 50:111–119

    Article  Google Scholar 

  • Klumpp RT, and Stefsky M (2004) Genetic variation of Pinus cembra along an elevational transect in Austria. USDA Forest Service Proc. RMRS-P-32:136-140

  • Lewandowski A, Burczyk J (2000) Mating system and genetic diversity in natural populations of European larch (Larix decidua) and Stone pine (Pinus cembra) located at higher elevations. Silvae Genet 49(3):158–161

    Google Scholar 

  • Manly BFJ (1985) The statistics of natural selection on animal populations. Chapman and Hall, London, pp 272–282

    Book  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the ADH locus in Drosophila. Nature 351:652–654

    Article  CAS  PubMed  Google Scholar 

  • Miller MP (1997) TFPGA Version 1.3. A Windows program for the analysis of allozyme and molecular population genetic data. Department of Biological Sciences Northern Arizona University. pp 30

  • Myczkowski S (1971) Rozmieszczenie. In: Białobok S. (eds.) Limba Pinus cembra L. Nasze Drzewa Leśne. Tom II PWN, Warszawa-Poznań (in Polish)

  • Naydenov KD, Naydenov MK, Tremblay F, Alexandrov A, Aubin-Fournier LD (2011) Patterns of genetic diversity that result from bottlenecks in Scots pine and the implications for local genetic conservation and management practices in Bulgaria. New Forest 42:179–193

    Article  Google Scholar 

  • Nei M (1972) Genetic distances between populations. Amer Nat 106:283–292

    Article  Google Scholar 

  • Nei M, Roychoudhury AK (1974) Sampling variances of heterozygosity and genetic distance. Genetics 76:379–390

    PubMed Central  CAS  PubMed  Google Scholar 

  • Niemtur S (2002) Badania nad sosną limbą (Pinus cembra L.) z czterech tatrzańskich stanowisk. Zesz Naukowe Akad Rol w Krakowie 86:65–80 (in Polish)

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlex 6.5: genetic analysis in excel, population genetic software for teaching and research-un update. Bioinformatics 28(19):2537–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Riddoch BJ (1993) The adaptive significance of electrophoretic mobility in phosphoglucose isomerase (PGI). Biol J Linn Soc 50:1–17

    Article  Google Scholar 

  • Salzer K, Gugerli F (2012) Reduced fitness at early life stages in peripheral versus core populations of Swiss stone pine (Pinus cembra) is not reflected by levels of inbreeding in seed families. Alp Bot 122:75–85

    Article  Google Scholar 

  • Schoettle AW, Goodrich BA, Hipkins V, Richards Ch, Kray J (2012) Geographic patterns of genetic variation and population structure in Pinus aristata, rocky Mountain bristlecone pine. Can J For Res 42:23–37

    Article  Google Scholar 

  • Sork VL, Davis FW, Smouse PE, Apsit VJ, Dyer RJ, Fernandez-M JF, Kuhn B (2002) Pollen movement in declining populations of California valley oak, Quercus lobata: where have all the fathers gone? Mol Ecol 11:1657–1668

    Article  CAS  PubMed  Google Scholar 

  • Teodosiu M, Pȃrnută G (2007) Genetic diversity and differentiation in Swiss stone pine (Pinus cembra L.) provenances from Romania. An ICAS 50:7–15

    Google Scholar 

  • Ulber M, Gugerli F, Bozic G (2004) EUFORGEN Technical Guidlines for genetic conservation and use for Swiss stone pine (Pinus cembra). International Plant Genetic Resources Institute, Rome, Italy: 6

  • Witkowska-Żuk L (1997) Limba, królowa lasów tatrzańskich. Poznajmy Las 1:15–17 (in Polish)

    Google Scholar 

  • Yeh FC, Yang R-C, Boyle T, Ye Z-H, Mao JX (1997) POPGENE: the user-friendly shareware for population genetic analysis. University of Alberta, Canada, Molecular Biology and Biotechnology Centre

    Google Scholar 

  • Zoller H (1991) Pinus. In: Conert HJ, Hamann U, Schultze-Motel W, Wagenitz G (eds) Gustav Hegi-Illustrierte Flora von Mitteleuropa. Blackwell, Berlin, pp 77–83

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Łukasz Myczko for his support in plant material collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Wojnicka-Półtorak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojnicka-Półtorak, A., Celiński, K., Chudzińska, E. et al. Genetic Resources of Pinus cembra L. Marginal Populations from the Tatra Mountains: Implications for Conservation. Biochem Genet 53, 49–61 (2015). https://doi.org/10.1007/s10528-015-9670-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-015-9670-4

Keywords