Skip to main content
Log in

Molecular Cloning and Evolutionary Analysis of the HOG-Signaling Pathway Genes from Saccharomyces cerevisiae Rice Wine Isolates

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The high osmolarity glycerol (HOG) signaling pathway is crucial for yeast to cope with high osmolarity. Here, we showed that Saccharomyces cerevisiae rice wine isolates exhibited higher tolerance to osmotic stress, which was associated with the evolution of HOG pathway genes. Phylogenetic analysis of HOG genes revealed that Chinese rice wine strains were closely related to sake strains, indicating a common origin of rice wine strains. The DNA sequence diversity analysis showed that higher levels of polymorphism tended to accumulate on the osmosensor genes (MSB2 and SLN1), suggesting that most changes in a signaling transduction pathway were concentrated in the receptors. Moreover, the rapid evolution of osmosensors (Sln1/Msb2) and transcription factor (Msn4) might experience positive selection. Our results imply that the evolution of HOG pathway genes in S. cerevisiae rice wine strains is associated with their adaptation to high osmotic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aa E, Townsend JP, Adams RI, Nielsen KM, Taylor JW (2006) Population structure and gene evolution in Saccharomyces cerevisiae. FEMS Yeast Res 6(5):702–715

    Article  PubMed  Google Scholar 

  • de Nadal E, Real FX, Posas F (2007) Mucins, osmosensors in eukaryotic cells? Trends Cell Biol 17(12):571–574

    Article  PubMed  Google Scholar 

  • Dhar R, Sagesser R, Weikert C, Yuan J, Wagner A (2011) Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Biol 24(5):1135–1153

    Article  PubMed  CAS  Google Scholar 

  • Diezmann S, Dietrich FS (2009) Saccharomyces cerevisiae: population divergence and resistance to oxidative stress in clinical, domesticated and wild isolates. PLoS ONE 4(4):e5317

    Article  PubMed  Google Scholar 

  • Erasmus DJ, van Vuuren HJJ (2009) Genetic basis for osmosensitivity and genetic instability of the wine yeast Saccharomyces cerevisiae VIN7. Am J Enol Vitic 60(2):145–154

    CAS  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24(4):469–486

    Article  PubMed  CAS  Google Scholar 

  • Fay JC, Benavides JA (2005) Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet 1(1):66–71

    Article  PubMed  CAS  Google Scholar 

  • Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series: 95-98

  • Jovelin R, Dunham JP, Sung FS, Phillips PC (2009) High nucleotide divergence in developmental regulatory genes contrasts with the structural elements of olfactory pathways in caenorhabditis. Genetics 181(4):1387–1397

    Article  PubMed  CAS  Google Scholar 

  • Kvitek DJ, Will JL, Gasch AP (2008) Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genet 4(10):e1000223

    Article  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Legras JL, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16(10):2091–2102

    Article  PubMed  CAS  Google Scholar 

  • Li YD, Liang H, Gu Z, Lin Z, Guan W, Zhou L, Li YQ, Li WH (2009) Detecting positive selection in the budding yeast genome. J Evol Biol 22(12):2430–2437

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Barton BH, Jones M, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis J (2009) Population genomics of domestic and wild yeasts. Nature 458(7236):337–341

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351(6328):652–654

    Article  PubMed  CAS  Google Scholar 

  • McGovern PE, Zhang JZ, Tang JG, Zhang ZQ, Hall GR, Moreau RA, Nunez A, Butrym ED, Richards MP, Wang CS, Cheng GS, Zhao ZJ, Wang CS (2004) Fermented beverages of pre- and proto-historic China. Proc Natl Acad Sci USA 101(51):17593–17598

    Article  PubMed  CAS  Google Scholar 

  • Mortimer RK (2000) Evolution and variation of the yeast (Saccharomyces) genome. Genome Res 10(4):403–409

    Article  PubMed  CAS  Google Scholar 

  • Muzzey D, Gomez-Uribe CA, Mettetal JT, van Oudenaarden A (2009) A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138(1):160–171

    Article  PubMed  CAS  Google Scholar 

  • Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJ (2009) Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 9:44

    Article  PubMed  Google Scholar 

  • O’Rourke S, Herskowitz I, O’Shea E (2002) Yeast go the whole HOG for the hyperosmotic response. Trends Genet 18(8):405–412

    Article  PubMed  Google Scholar 

  • Querol A, Fernandez-Espinar MT, del Olmo M, Barrio E (2003) Adaptive evolution of wine yeast. Int J Food Microbiol 86(1–2):3–10

    Article  PubMed  CAS  Google Scholar 

  • Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L (2009) Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature 458(7236):342–345

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) Mega 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Chi X, Wang P, Zheng D, Ding R, Li Y (2010) The evolutionary rate variation among genes of HOG-signaling pathway in yeast genomes. Biol Direct 5:46

    Article  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Zheng DQ, Wu XC, Tao XL, Wang PM, Li P, Chi XQ, Li YD, Yan QF, Zhao YH (2010) Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresour Technol 102(3):3020–3027

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Xiaoqin Chi (Zhejiang University) for her technical help during the course of the project. This work was supported by grants from the National Natural Science Foundation of China (No. 31101339) to Y. Li and the Zhejiang Provincial Natural Science Foundation (No. Y3100609) to X. Liang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yudong Li or Xinle Liang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 207 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Chen, W., Shi, Y. et al. Molecular Cloning and Evolutionary Analysis of the HOG-Signaling Pathway Genes from Saccharomyces cerevisiae Rice Wine Isolates. Biochem Genet 51, 296–305 (2013). https://doi.org/10.1007/s10528-012-9563-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-012-9563-8

Keywords

Navigation