Skip to main content
Log in

Phylogenetic Genomewide Comparisons of the Pentatricopeptide Repeat Gene Family in indica and japonica Rice

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

More than 400 pentatricopeptide repeat (PPR) genes have been found in higher plants, but most of them have not been functionally analyzed and their origins are still obscure. In this study, we performed phylogenetic genomewide comparisons of the PPR gene family in indica and japonica rice to explore the expansion mechanisms of these genes in higher plants. The functions of PPR genes in plant CMS/Rf systems are also discussed. The results indicate that (1) unequal crossing over participated in the expansion of the newly evolved PPR genes in indica and japonica rice genomes, (2) CMS/Rf systems are different in monocots and dicots, (3) the BT-type CMS/Rf system exists in both indica and japonica rice, and (4) both the PPR gene family and the BT-type CMS/Rf system may have existed before the divergence of indica and japonica rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akita M, Valkonen JP (2002) A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes. J Mol Evol 55:595–605

    Article  PubMed  CAS  Google Scholar 

  • Barr C, Fishman L (2010) The nuclear component of a cytonuclear hybrid incompatibility in mimulus maps to a cluster of pentatricopeptide repeat genes. Genetics 184:455–465

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten A, Cannon S, Spangler R, May G (2003) Genome-level evolution of resistance genes in Arabidopsis thaliana. Genetics 165:309–319

    PubMed  CAS  Google Scholar 

  • Bentolila L, Alfonso A, Hanson M (2002) A pentatricopeptide repeat-containing gene restores fertility to male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892

    Article  PubMed  CAS  Google Scholar 

  • Bryant N, Lloyd J, Sweeney C, Myouga F, Meinke D (2011) Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis. Plant Physiol 155:1678–1689

    Article  PubMed  CAS  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A (2003) Identification of the fertility restoration locus, Rf0, in radish, as a member of the pentatricopeptide-repeat protein family. Eur Mol Biol Organ Rep 4:588–594

    CAS  Google Scholar 

  • Fisk DG, Walker MB, Barkan A (1999) Molecular cloning of the maize gene crp1 reveals similarity between regulators of mitochondrial and chloroplast gene expression. Eur Mol Biol Organ J 18:2621–2630

    Article  CAS  Google Scholar 

  • Fujii S, Small I (2011) The evolution of RNA editing and pentatricopeptide repeat genes. New Phyto 191:37–47

    Article  CAS  Google Scholar 

  • Fujii S, Bond CS, Small ID (2011) Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc Natl Acad Sci USA 108:1723–1728

    Article  PubMed  CAS  Google Scholar 

  • Hammani K, Gobert A, Hleibieh Choulier L, Small I, Giegé P (2011) An Arabidopsis dual-localized pentatricopeptide repeat protein interacts with nuclear proteins involved in gene expression regulation. Plant Cell 23:730–740

    Article  PubMed  CAS  Google Scholar 

  • Hayes ML, Mulligan RM (2011) Pentatricopeptide repeat proteins constrain genome evolution in chloroplasts. Mol Biol Evol 28:2029–2039

    Article  PubMed  CAS  Google Scholar 

  • Ivanov MK, Dymshits GM (2007) Cytoplasmic male sterility and restoration of pollen fertility in higher plants. Russ J Genet 43:451–468

    Article  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (1994) MEGA: molecular evolutionary genetics analysis software for microcomputers. Comput Appl Biosci 10:189–191

    PubMed  CAS  Google Scholar 

  • Laser KD, Lersten NR (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev 38:425–454

    Article  Google Scholar 

  • Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116–122

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Cui XC, Hrner HT, Weiner H, Schnable PS (2001) Mitochondrial aldehyde dehydrogenase activity is required for male fertility in maze. Plant Cell 13:1063–1078

    PubMed  CAS  Google Scholar 

  • Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • Manthey GM, McEwen JE (1995) The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae. Eur Mol Biol Organ J 14:4031–4043

    CAS  Google Scholar 

  • Nicholas KB, Nicholas HB, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation EMBnet. News 4:1–4

    Google Scholar 

  • O’Toole N, Hattori M, Andres C, Iida K, Lurin C, Schmitz-Linneweber C, Sugita M, Small I (2008) On the expansion of the pentatricopeptide repeat gene family in plants. Mol Biol Evol 25:1120–1128

    Article  PubMed  Google Scholar 

  • Pusnik K, Small I, Read LK, Fabbro T, Schneider A (2007) Pentatricopeptide repeat proteins in Trypanosoma brucei function in mitochondrial ribosomes. Mol Cell Biol 27:6876–6888

    Article  PubMed  CAS  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif: a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Hibara K, Ishida T, Tasaka M (2001) The cup-shaped cotyledon1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135

    PubMed  CAS  Google Scholar 

  • Tatusova TA, Madden TL (1999) Blast 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Wang ZH, Zou YJ, Li XY, Zhang QY, Chen LT, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu YG (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Zhu H, Guo W, Zhang T (2010) Molecular cloning and characterization of five genes encoding pentatricopeptide repeat proteins from Upland cotton (Gossypium hirsutum L.). Mol Biol Rep 37:801–808

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:262–281

    Article  Google Scholar 

  • Yuan YW, Liu C, Max HE, Olmstead RG (2009) The pentatricopeptide repeat (PPR) gene family, a tremendous resource for plant phylogenetic studies. New Phytol 182:272–283

    Article  PubMed  CAS  Google Scholar 

  • Zehrmann A, Verbitskiy D, van der Merwe JA, Brennicke A, Takenaka M (2009) A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thaliana. Plant Cell 21:558–567

    Article  PubMed  CAS  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298

    Article  Google Scholar 

  • Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271:402–415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the editor and anonymous reviewers for many critical comments and suggestions on the manuscript. This research was supported by the National Natural Science Foundation of China (30860155) and the State Key Basic Research Program of China (2001CB108806).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaobo Li or Youlin Zhu.

Additional information

Shaobo Li and Qingping Sun contributed equally to this paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Sun, Q., Hu, M. et al. Phylogenetic Genomewide Comparisons of the Pentatricopeptide Repeat Gene Family in indica and japonica Rice. Biochem Genet 50, 978–989 (2012). https://doi.org/10.1007/s10528-012-9537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-012-9537-x

Keywords

Navigation