Skip to main content

Advertisement

Log in

Comparative Genetics of the Poly-Q Tract of Ataxin-1 and Its Binding Protein PQBP-1

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Human PQBP-1 is known to interact with triplet repeat disease gene products such as ataxin and huntingtin through their poly-glutamine (poly-Q) tracts. The poly-Q tracts show extensive variation in both the number and the configuration of repeats among species. A surface plasmon resonance assay showed clear interaction between human PQBP-1 and Q11, representative of the poly-Q tract of the ataxin-1 of Old World monkeys. No response was observed using Q2PQ2P4Q2, representative of the poly-Q tract of the ataxin-1 of New World monkeys. This implies that the interaction of human PQBP-1 with ataxin-1 is limited to humans and closely related species. Comparison of the human and mouse PQBP-1 sequences showed an elevated amino acid substitution rate in the polar amino acid-rich domain of PQBP-1 that is responsible for binding to poly-Q tracts. This could have been advantageous to the new biological function of human PQBP-1 through poly-Q tracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albà M, Guigó R (2004) Comparative analysis of amino acid repeats in rodents and humans. Genome Res 14:549–554

    Article  PubMed  Google Scholar 

  • Cossée M, Demeer B, Blanchet P, Echenne B, Singh D, Hagens O, Antin M, Finck S, Vallee L, Dollfus H, Hegde S, Springell K, Thelma BK, Woods G, Kalscheuer V, Mandel JL (2006) Exonic microdeletions in the X-linked PQBP1 gene in mentally retarded patients: a pathogenic mutation and in-frame deletions of uncertain effect. Eur J Hum Genet 14:418–425

    Article  PubMed  Google Scholar 

  • Djian P, Hancock J, Chana H (1996) Codon repeats in genes associated with human diseases: fewer repeats in the genes of nonhuman primates and nucleotide substitutions concentrated at the sites of reiteration. Proc Natl Acad Sci USA 93:417–421

    Article  PubMed  CAS  Google Scholar 

  • Dunker A, Brown C, Lawson J, Iakoucheva L, Obradovi Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  PubMed  CAS  Google Scholar 

  • Fink A (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41

    Article  PubMed  CAS  Google Scholar 

  • Fukuchi S, Homma K, Minezaki Y, Gojobori T (2009) Development of an accurate classification system of proteins into structured and unstructured regions that uncovers novel structural domains: its application to human transcription factors. BMC Struct Biol 9:26

    Article  PubMed  Google Scholar 

  • Golding G (1999) Simple sequence is abundant in eukaryotic proteins. Protein Sci 8:1358–1361

    Article  PubMed  CAS  Google Scholar 

  • Huntley M, Clark A (2007) Evolutionary analysis of amino acid repeats across the genomes of 12 drosophila species. Mol Biol Evol 24:2598–2609

    Article  PubMed  CAS  Google Scholar 

  • Huntley M, Golding G (2000) Evolution of simple sequence in proteins. J Mol Evol 51:131–140

    PubMed  CAS  Google Scholar 

  • Ishida T, Kinoshita K (2008) Prediction of disordered regions in proteins based on the meta approach. Bioinformatics 24:1344–1348

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto K, Huang YT, Ueda S (2000) Genomic organization and alternative transcripts of the human PQBP-1 gene. Gene 259:69–73

    Article  PubMed  CAS  Google Scholar 

  • Kurosaki T, Ninokata A, Wang L, Ueda S (2006) Evolutionary scenario for acquisition of CAG repeats in human sca1 gene. Gene 373:23–27

    Article  PubMed  CAS  Google Scholar 

  • Li W (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol 36:96–99

    Article  PubMed  CAS  Google Scholar 

  • Mularoni L, Veitia R, Albà M (2007) Highly constrained proteins contain an unexpectedly large number of amino acid tandem repeats. Genomics 89:316–325

    Article  PubMed  CAS  Google Scholar 

  • Nakachi Y, Hayakawa T, Oota H, Sumiyama K, Wang L, Ueda S (1997) Nucleotide compositional constraints on genomes generate alanine-, glycine-, and proline-rich structures in transcription factors. Mol Biol Evol 14:1042–1049

    PubMed  CAS  Google Scholar 

  • Okazawa H, Rich T, Chang A, Lin X, Waragai M, Kajikawa M, Enokido Y, Komuro A, Kato S, Shibata M, Hatanaka H, Mouradian MM, Sudol M, Kanazawa I (2002) Interaction between mutant ataxin-1 and PQBP-1 affects transcription and cell death. Neuron 34:701–713

    Article  PubMed  CAS  Google Scholar 

  • Orr HY, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  PubMed  CAS  Google Scholar 

  • Orr HY, Chung MY, Banfi S, Kwiatkowski TJ, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226

    Article  PubMed  CAS  Google Scholar 

  • Reuter K, Nottrott S, Fabrizio P, Lührmann R, Ficner R (1999) Identification, characterization and crystal structure analysis of the human spliceosomal U5 snRNP-specific 15 kD protein. J Mol Biol 294:515–525

    Article  PubMed  CAS  Google Scholar 

  • Sumiyama K, Washio-Watanabe K, Saitou N, Hayakawa T, Ueda S (1996) Class III POU genes: generation of homopolymeric amino acid repeats under GC pressure in mammals. J Mol Evol 43:170–178

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Mizuguchi M, Shinoda H, Aizawa T, Demura M, Okazawa H, Kawano K (2009) Polyglutamine tract binding protein-1 is an intrinsically unstructured protein. Biochim Biophys Acta 1794:936–943

    PubMed  CAS  Google Scholar 

  • Takahashi M, Mizuguchi M, Shinoda H, Aizawa T, Demura M, Okazawa H, Kawano K (2010) Polyglutamine tract-binding protein-1 binds to U5–15kD via a continuous 23-residue segment of the C-terminal domain. Biochim Biophys Acta 1804:1500–1507

    PubMed  CAS  Google Scholar 

  • Waragai M, Lammers CH, Takeuchi S, Imafuku I, Udagawa Y, Kanazawa I, Kawabata M, Mouradian MM, Okazawa H (1999) PQBP-1, a novel polyglutamine tract-binding protein, inhibits transcription activation by Brn-2 and affects cell survival. Hum Mol Genet 8:977–987

    Article  PubMed  CAS  Google Scholar 

  • Waragai M, Junn E, Kajikawa M, Takeuchi S, Kanazawa I, Shibata M, Mouradian MM, Okazawa H (2000) PQBP-1/Npw38, a nuclear protein binding to the polyglutamine tract, interacts with U5–15kD/dim1p via the carboxyl-terminal domain. Biochem Biophys Res Commun 273:592–595

    Article  PubMed  CAS  Google Scholar 

  • Ward J, Sodhi J, McGuffin L, Buxton B, Jones D (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  PubMed  CAS  Google Scholar 

  • Wright P, Dyson H (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shintaroh Ueda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurosaki, T., Gojobori, J. & Ueda, S. Comparative Genetics of the Poly-Q Tract of Ataxin-1 and Its Binding Protein PQBP-1. Biochem Genet 50, 309–317 (2012). https://doi.org/10.1007/s10528-011-9473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-011-9473-1

Keywords

Navigation