Skip to main content
Log in

Effect of the g.–723G→T Polymorphism in the Bovine Myogenic Factor 5 (Myf5) Gene Promoter Region on Gene Transcript Level in the Longissimus Dorsi Muscle and on Meat Traits of Polish Holstein-Friesian Cattle

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Myogenic factor 5 (Myf5), a product of the Myf5 gene, belongs to the MRF family of basic helix-loop-helix transcription factors that regulate myogenesis. Their roles in muscle growth and development make their genes candidates for molecular markers of meat production in livestock, but nucleotide sequence polymorphism has not been thoroughly studied in MRF genes. We detected four single nucleotide polymorphisms (SNPs) within exon 1 of the Myf5 gene, encoding the NH-terminal transactivation domain of the Myf5 protein. Three of these mutations change the amino acid sequence. The distribution of these SNPs was highly skewed in cattle populations; most of the mutations were found in only a few or even single individuals. Of the nine SNPs found in the promoter region of Myf5, one (transversion g.–723G→T) was represented by all three genotypes distributed in the cattle populations studied. This polymorphism showed an influence on Myf5 gene expression in the longissimus dorsi muscle and was associated with sirloin weight and fat weight in sirloin in carcasses of Holstein-Friesian cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Armstrong D, Esser KA (2005) Wnt/(beta)-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol 289:853–859

    Article  Google Scholar 

  • Barth JL, Worrell RA, Crawford M, Morris J, Ivarie R (1993) Isolation, sequence, and characterization of the bovine myogenic factor-encoding gene myf-5. Gene 127:185–191

    Article  CAS  PubMed  Google Scholar 

  • Barton ER (2006) The ABCs of IGF-I isoforms: impact on muscle hypertrophy and implications for repair. Appl Physiol Nutr Metab 31:791–797

    Article  CAS  PubMed  Google Scholar 

  • Borello U, Berarducci B, Murphy P, Bajard L, Buffa V, Piccolo S, Buckingham M, Cossu G (2006) The Wnt/β-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development 133:3723–3732

    Article  CAS  PubMed  Google Scholar 

  • Braun T, Winter B, Bober E, Arnold HH (1990) Transcriptional activation domain of the muscle-specific gene regulatory protein Myf5. Nature (London) 346:663–665

    Article  CAS  Google Scholar 

  • Brown T, Rudnicki MA, Arnold HH, Jaenisch R (1992) Targeted inactivation of the mouse regulatory gene Myf5 results in abnormal distal rib development and early postnatal death in homozygous mouse mutants. Cell 71:369–382

    Article  Google Scholar 

  • Brown T, Bober E, Rudnicki MA, Jaenisch R, Arnold HH (1994) MyoD expression marks the onset of skeletal myogenesis in homozygous Myf5 mutant mice. Development 120:3083–3092

    Google Scholar 

  • Brunelli S, Relaix F, Baesso S, Buckingham M, Cossu G (2007) Beta catenin-independent activation of MyoD in presomitic mesoderm requires PKC and depends onPax3 transcriptional activity. Dev Biol 304:604–614

    Article  CAS  PubMed  Google Scholar 

  • Casas E, Shackelford SD, Keele JW, Stone RT, Kappes SM, Koohmaraie M (2000) Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J Anim Sci 78(3):560–569

    CAS  PubMed  Google Scholar 

  • Cossu G, Borello U (1999) WNT signaling and the activation of myogenesis in mammals. EMBO J 24:6867–6872

    Article  Google Scholar 

  • Drogemuller C, Kempers A (2000) A TaqI PCR-RFLP at the bovine myogenic factor (MYF5) gene. Anim Genet 31:146

    Article  CAS  PubMed  Google Scholar 

  • Edmondson DG, Olson EN (1993) Helix-loop-helix proteins as regulators of muscle specific transcription. J Biol Chem 268:755–758

    CAS  PubMed  Google Scholar 

  • Foucher I, Volovitch M, Frain M, Kim JJ, Souberbielle JC, Gan L, Unterman TG, Prochiantz A, Trembleau A (2002) Hoxa5 overexpression correlates with IGFBP1 upregulation and postnatal dwarfism: evidence for an interaction between Hoxa5 and Forkhead box transcription factors. Development 129:4065–4074

    CAS  PubMed  Google Scholar 

  • Gerber AN, Klesert TR, Bergstrom DA, Tapscott SJ (1997) Two domains of MyoD mediate transcriptional activation of genes in repressive chromatin: a mechanism for lineage determination in myogenesis. Genes Dev 11:436–450

    Article  CAS  PubMed  Google Scholar 

  • Hagen IJ, Zadissa A, McEwan JC, Veenvliet BA, Hickey SM, Cullen NG, Morris CA, Wilson T (2005) Molecular and bioinformatic strategies for gene discovery for meat traits: a reverse genetics approach. Aust J Exp Agr 45:801–807

    Article  CAS  Google Scholar 

  • Hughes SM, Schiaffino S (1999) Control of muscle fiber size: a crucial factor in ageing. Acta Phys Scand 167:307–312

    Article  CAS  Google Scholar 

  • Ishibashi J, Perry RL, Asakura A, Rudnicki MA (2005) MyoD induces myogenic differentiation through cooperation of its NH- and COOH-terminal regions. J Cell Biol 171:471–482

    Article  CAS  PubMed  Google Scholar 

  • Kanai N, Fuji T, Saito K, Jokohama T (1994) Rapid and simple method for preparation of genomic DNA from easily obtainable clotted blood. J Clin Pathol 47:1043–1044

    Article  CAS  PubMed  Google Scholar 

  • Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431:466–471

    Article  CAS  PubMed  Google Scholar 

  • Langlands K, Yin X, Anand G, Prochownik EV (1997) Differential interactions of Id proteins with basic helix loop helix transcription factors. J Biol Chem 272(32):19785–19793

    Article  CAS  PubMed  Google Scholar 

  • Li C, Basarab J, Snelling WM, Benkel B, Murdoch B, Hansen C, Moore SS (2004) Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus. J Anim Sci 82(1):1–7

    CAS  PubMed  Google Scholar 

  • Lisowski P, Pierzchała M, Gościk J, Pareek ChS, Zwierzchowski L (2008) Evaluation of reference genes for studies of gene expression in bovine liver, kidney, pituitary, and thyroid. J Appl Genet 49(4):367–372

    PubMed  Google Scholar 

  • Maak S, Neumann K, Swalve HH (2006) Identification and analysis of putative regulatory sequence for the MYF5/MYF6 locus in different vertebrate species. Gene 379:141–147

    Article  CAS  PubMed  Google Scholar 

  • MacNeil MD, Grosz MD (2002) Genome-wide scans for QTL affecting carcass traits in Hereford × composite double backcross populations. J Anim Sci 80(9):2316–2324

    CAS  PubMed  Google Scholar 

  • Murre C, McCaw PS, Baltimore D (1989) A new binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783

    Article  CAS  PubMed  Google Scholar 

  • Oprządek J, Dymnicki E, Oprządek A, Słoniewski K, Sakowski T, Reklewski Z (2001) A note on the effect of breed of beef cattle on the carcass traits. Anim Sci Pap Rep 19:79–89

    Google Scholar 

  • Perez-Ruiz A, Ono Y, Gnocchi VF, Zammit PS (2008) β-Catenin promotes self-renewal of skeletal muscle satellite cells. J Cell Sci 121:1373–1382

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl M (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Ridgeway AG, Petropoulos H, Wilton S, Skerjanc SI (2000) Wnt signaling regulates the function of MyoD and myogenin. J Biol Chem 275(42):32398–32405

    Article  CAS  PubMed  Google Scholar 

  • Rudnicki MA, Jaenisch R (1995) The MyoD family of transcription factors and skeletal myogenesis. BioEssays 17:203–209

    Article  CAS  PubMed  Google Scholar 

  • Rudnicki MA, Schnegelsberg PN, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf5 is required for the formation of skeletal muscle. Cell 75:1351–1359

    Article  CAS  PubMed  Google Scholar 

  • Schwarz JJ, Chakraborty T, Martin J, Zhou J, Olson E (1992) The basic region of myogenin cooperates with two transcription activation domains to induce muscle specific transcription. Mol Cell Biol 12(1):266–275

    CAS  PubMed  Google Scholar 

  • Stratil A, Čepica S (1999) Three polymorphisms in the porcine myogenic factor 5 (MYF5) gene detected by PCR-RFLP. Anim Genet 30:79–80

    Article  CAS  PubMed  Google Scholar 

  • Te Pas MF, Soumillion A (2001) The use of physiologic and functional genomic information of the regulation of the determination of skeletal muscle mass in livestock breeding strategies to enhance meat production. Curr Genomics 2:285–304

    Article  CAS  Google Scholar 

  • Te Pas MF, Harders FL, Soumillion A, Born L, Buist W, Meuwissen TH (1999) Genetic variation at the porcine MYF-5 gene locus: lack of association with meat production traits. Mamm Genome 10:123–127

    Article  CAS  PubMed  Google Scholar 

  • Urbański P, Kurył J (2004) New SNPs in the coding and 5′ flanking regions of porcine MYOD1 (MYF3) and MYF5 genes. J Appl Genet 45(3):325–329

    PubMed  Google Scholar 

  • Urbański P, Flisikowski K, Starzynski R, Kurył J, Kamyczek M (2006) A new SNP in the promoter region of the porcine MYF5 gene has no effect on its transcript level in m. longissimus dorsi. J Appl Genet 47(1):59–61

    PubMed  Google Scholar 

  • Wang Y, Schnegelsberg PN, Dausman J, Jaenisch R (1996) Functional redundancy of the muscle-specific transcription factors Myf5 and myogenin. Nature 379:823–825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Polish Ministry of Science and Higher Education grants PBZ-KBN-113/P06/2005 and NN311 043434. The contribution of Dagmara Robakowska-Hyzorek was also financially supported by the scholarship funded by the President of the Polish Academy of Sciences. The authors thank Prof. Chandra S. Pareek and the Rajastan Go Sewa Sangh Organization, Bikaner, India, for providing hair samples of Rathi Zebu cattle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmara Robakowska-Hyżorek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robakowska-Hyżorek, D., Oprządek, J., Żelazowska, B. et al. Effect of the g.–723G→T Polymorphism in the Bovine Myogenic Factor 5 (Myf5) Gene Promoter Region on Gene Transcript Level in the Longissimus Dorsi Muscle and on Meat Traits of Polish Holstein-Friesian Cattle. Biochem Genet 48, 450–464 (2010). https://doi.org/10.1007/s10528-009-9328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-009-9328-1

Keywords

Navigation