Skip to main content
Log in

Positive Selection Drives the Evolution of Bat Bitter Taste Receptor Genes

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Bitter taste reception is expected to be associated with dietary selection and to prevent animals from ingesting potentially harmful compounds. To investigate the genetic basis of bitter taste reception, we reconfirmed the bitter taste receptor (T2R) genes from cow (herbivore) and dog (carnivore) genome sequences and identified the T2R repertoire from the draft genome of the bat (insectivore) for the first time using an automatic data-mining method. We detected 28 bitter receptor genes from the bat genome, including 9 intact genes, 8 partial but putative functional genes, and 9 pseudogenes. In the phylogenetic analysis, most of the T2R genes from the three species intermingle across the tree, suggesting that some are conserved among mammals with different dietary preferences. Furthermore, one clade of bat-specific genes was detected, possibly implying that the insectivorous mammal could recognize some species-specific bitter tastants. Evolutionary analysis shows strong positive selection was imposed on this bat-specific cluster, indicating that positive selection drives the functional divergence and specialization of the bat bitter taste receptors to adapt diets to the external environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100:693–702

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14:988–995

    Article  PubMed  CAS  Google Scholar 

  • Blum M (1981) Chemical defense of arthropods. Academic Press, New York

    Google Scholar 

  • Bufe B, Hofmann T, Krautwurst D, Raguse JD, Meyerhof W (2002) The human TAS2R16 receptor mediates bitter taste in response to beta-glucopyranosides. Nat Genet 32:397–401

    Article  PubMed  CAS  Google Scholar 

  • Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs function as bitter taste receptors. Cell 100:703–711

    Article  PubMed  CAS  Google Scholar 

  • Eisner T (1970) Chemical defense against predators in arthropods. Academic Press, New York

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fenton M, Barclay R (1980) Myotis lucifugus. Mamm Species 142:1–8

    Article  Google Scholar 

  • Fenton M, Bell G (1979) Echolocation and feeding behaviour in four species of Myotis (Chiroptera). Can J Zool 57:1271–1277

    Article  Google Scholar 

  • Fischer A, Gilad Y, Man O, Paabo S (2005) Evolution of bitter taste receptors in humans and apes. Mol Biol Evol 22:432–436

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson TA, Damak S, Margolskee RF (2000) The molecular physiology of taste transduction. Curr Opin Neurobiol 10:519–527

    Article  PubMed  CAS  Google Scholar 

  • Glendinning JI (1994) Is the bitter rejection response always adaptive? Physiol Behav 56:1217–1227

    Article  PubMed  CAS  Google Scholar 

  • Glendinning JI, Smith JC (1994) Consistency of meal patterns in laboratory rats. Physiol Behav 56:7–16

    Article  PubMed  CAS  Google Scholar 

  • Glendinning JI, Tarre M, Asaoka K (1999) Contribution of different bitter-sensitive taste cells to feeding inhibition in a caterpillar (Manduca sexta). Behav Neurosci 113:840–854

    Article  PubMed  CAS  Google Scholar 

  • Go Y (2006) Proceedings of the SMBE Tri-National Young Investigators’ Workshop 2005. Lineage-specific expansions and contractions of the bitter taste receptor gene repertoire in vertebrates. Mol Biol Evol 23:964–972

    Google Scholar 

  • Go Y, Satta Y, Takenaka O, Takahata N (2005) Lineage-specific loss of function of bitter taste receptor genes in humans and nonhuman primates. Genetics 170:313–326

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  • Patterson B, Willig MR, Stevens RD (2003) Trophic strategies, niche partitioning, and patterns of ecological organization. University of Chicago press, Chicago

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Shi P, Zhang J (2006) Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Mol Biol Evol 23:292–300

    Article  PubMed  CAS  Google Scholar 

  • Shi P, Zhang J, Yang H, Zhang YP (2003) Adaptive diversification of bitter taste receptor genes in mammalian evolution. Mol Biol Evol 20:805–814

    Article  PubMed  CAS  Google Scholar 

  • Simmons NB (2005) Mammal species of the world: a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Weatherston J, Percy JE (1970) Arthropod defensive secretions. Academic Press, New York

    Google Scholar 

  • Wong GT, Gannon KS, Margolskee RF (1996) Transduction of bitter and sweet taste by gustducin. Nature 381:796–800

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    PubMed  CAS  Google Scholar 

  • Yang Z, Wong WS, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants under the Key Construction Program of the National “985” Project and “211” Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Dong or Huabin Zhao.

Additional information

Authors Yingying Zhou and Dong Dong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Dong, D., Zhang, S. et al. Positive Selection Drives the Evolution of Bat Bitter Taste Receptor Genes. Biochem Genet 47, 207–215 (2009). https://doi.org/10.1007/s10528-008-9218-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-008-9218-y

Keywords

Navigation