Skip to main content
Log in

Strong Genetic Differentiation of Primula sikkimensis in the East Himalaya–Hengduan Mountains

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The East Himalaya-Hengduan Mountains region is the center of diversity of the genus Primula, and P. sikkimensis is one of the most common members of the genus in the region. In this study, the genetic diversity and structure of P. sikkimensis populations in China were assessed using inter-simple sequence repeat (ISSR) and chloroplast microsatellite markers. The 254 individuals analyzed represented 13 populations. High levels of genetic diversity were revealed by ISSR markers. At the species level, the expected heterozygosity and Shannon’s index were 0.4032 and 0.5576, respectively. AMOVA analysis showed that 50.3% of the total genetic diversity was partitioned among populations. Three pairs of chloroplast microsatellite primers tested yielded a total of 12 size variants and 15 chloroplast haplotypes. Strong cpDNA genetic differentiation (G ST = 0.697) and evidence for phylogeographic structure were detected (N ST = 0.788, significantly higher than G ST). Estimated rates of pollen-mediated gene flow are approximately 27% greater than estimated rates of seed-mediated gene flow in P. sikkimensis. Both seed and pollen dispersal, however, are limited, and gene flow among populations appears to be hindered by the patchiness of the species’ habitats and their geographic isolation. These features may have played important roles in shaping the genetic structure of P. sikkimensis. A minimum-spanning tree of chloroplast DNA haplotypes was constructed, and possible glacial refugia of P. sikkimensis were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antrobus S, Lack AJ (1993) Genetics of colonizing and established populations of Primula veris. Heredity 71:252–258

    Google Scholar 

  • Birky CW Jr, Maruyama T, Fuerst P (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103:513–527

    PubMed  Google Scholar 

  • Cahalan CM, Gliddon C (1985) Genetic neighbourhood sizes in Primula vulgaris. Heredity 54:65–70

    Google Scholar 

  • Chung SM, Decker-Walters DS, Staub JE (2003) Genetic relationships within the Cucurbitaceae as assessed by consensus chloroplast simple sequence repeats (ccSSR) marker and sequence analyses. Can J Bot 81:814–832

    Article  CAS  Google Scholar 

  • Doyle J (1991) DNA protocols for plants-CTAB total DNA isolation. In: Hewitt GM, Johnston A (eds) Molecular techniques in taxonomy. Springer, Berlin, pp 283–293

    Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plants populations. Heredity 72:250–259

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (1993) Phylip, Phylogenetic inference package, version 3.5.7. A computer program distributed by the author, http://www.evolution.genetics.washington.edu/phylip.html. Department of genetics, University of Washington, Seattle

  • Fontaine C, Lovett PN, Sanou H, Maley J (2004) Genetic diversity of the shea tree (Vitellaria paradoxa C.F. Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93:639–648

    Article  PubMed  CAS  Google Scholar 

  • Ge XJ, Zhang LB, Yuan YM, Hao G, Chiang TY (2005) Strong genetic differentiation of the East-Himalayan Megacodon stylophorus (Gentianaceae) detected by Inter-Simple Sequence Repeats (ISSR). Biodivers Conserv 14:849–861

    Article  Google Scholar 

  • Glover BJ, Abbott RJ (1995) Low genetic diversity in the Scotish endemic Primula scotica Hook. New Phytol 129:147–153

    Article  Google Scholar 

  • Gupta M, Chyi YS, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor Appl Genet 89:998–1006

    Article  CAS  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer Associates, Sunderland, pp 43–63

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond B 351:1291–1298

    Article  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hu CM (1994) On the geographical distribution of the Primulaceae. J Trop Subtrop Bot 2:1–14

    Google Scholar 

  • Hu CM, Kelso S (1996) Primulaceae. In: Wu CY, Raven PH (eds) Flora of China, vol 15. Science Press, Beijing, China, and Missouri Botanical Garden, St. Louis, USA, pp 39–189

  • Ishihama F, Ueno S, Tsumura Y, Washitani I (2006) Effects of density and floral morph on pollen flow and seed reproduction of an endangered heterostylous herb, Primula sieboldii. J Ecol 94:846–855

    Article  Google Scholar 

  • Jacquemyn H, Honnay O, Galbusera P, Roldán-Ruiz I (2004) Genetic structure of the forest herb Primula elatior in a changing landscape. Mol Ecol 13:211–219

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA 3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398

    Google Scholar 

  • Li XW, Li J (1993) A preliminary floristic study on the seed plants from the region of Hengduan Mountain. Acta Bot Yunnanica 15:217–231

    CAS  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Ann Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Lu Z, Wang YH, Peng YH (2006) Genetic diversity of Populus cathayana populations in southwestern China revealed by ISSR markers. Plant Sci 170:407–412

    Article  CAS  Google Scholar 

  • Miller MP (1997) Tools for population genetic analysis, ver. 1.3. Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nan P, Peng SL, Shi SH, Ren H, Yang J, Zhong Y (2003a) Interpopulation congruence in Chinese Primula ovalifolia revealed by chemical and molecular markers using essential oils and ISSRs. Z Naturforsch 58:57–61

    Google Scholar 

  • Nan P, Shi SH, Peng SL, Tian CJ, Zhong Y (2003b) Genetic diversity of Primula obconica from central and southwest China as revealed by ISSR markers. Ann Bot 91:329–333

    Article  PubMed  CAS  Google Scholar 

  • Newton AC, Allnutt TR, Dvorak WS, Del Castillo RF, Ennos RA (2002) Patterns of genetic variation in Pinus chiapensis, a threatened Mexican pine, detected by RAPD and mitochondrial DNA RFLP markers. Heredity 89:191–198

    Article  PubMed  CAS  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Peng YH, Lu ZX, Chen K, Luukkanen O, Korpelainen H, Li CY (2005) Population genetic survey of Populus cathayana originating from Southeastern Qinghai-Tibetan plateau of China based on SSR markers. Silvae Genet 54:116–122

    Google Scholar 

  • Petit RJ (1999) Diversité Génétique et Histoire des Populations d’Arbres Forestiers. Dossier D’habilitation à Diriger Des Recherches. Université de Paris-Sud, Université Formation de Recherche Scientifique d’Orsay, Paris

    Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    PubMed  CAS  Google Scholar 

  • Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci USA 92:7759–7763

    Article  PubMed  CAS  Google Scholar 

  • Rao RR (1994) Biodiversity in India: Floristic Aspects. Bisen Singh Mahendra Pal Singh, Dehra Dun

    Google Scholar 

  • Raspé O, Saumitou-Laprade P, Cuguen J, Jacquemart A-L (2000) Chloroplast DNA haplotype variation and population differentiation in Sorbus aucuparia L. (Rosaceae: Maloideae). Mol Ecol 9:1113–1122

    Article  PubMed  Google Scholar 

  • Reisch C, Anke A, Röhl M (2005) Molecular variation within and between ten populations of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic Appl Ecol 6:35–45

    Article  CAS  Google Scholar 

  • Richards J (2002). Primula, New edition. BT Batford, London

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin, Version 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Sun H (2002) Evolution of Arctic-tertiary flora in Himalayan–Hengduan Mountains. Acta Bot Yunnanica 24:671–688

    Google Scholar 

  • Syamsuardi, Okada H (2002) Genetic diversity and genetic structure of populations of Ranunculus japonicus Thunb. (Ranunculaceae). Plant Species Biol 17:59–69

    Article  Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  PubMed  CAS  Google Scholar 

  • Takhtajan A (1969) Flowering plants, origin and dispersal. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Van Rossum F, De Sousa SC, Triest L (2004) Genetic consequences of habitat fragmentation in an agricultural landscape on the common Primula veris, and comparison with its rare congener, P. vulgaris. Conserv Genet 5:231–245

    Article  Google Scholar 

  • Van Rossum F, Triest L (2003) Spatial genetic structure and reproductive success in fragmented and continuous populations of Primula vulgaris. Folia Geobot 38:239–254

    Article  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002). Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  PubMed  CAS  Google Scholar 

  • Viard F, El-Kassably YA, Ritland K (2001) Diversity and genetic structure in populations of Pseudotsuga menziesii (Pinaceae) at chloroplast microsatellite loci. Genome 44:336–344

    Article  PubMed  CAS  Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19

    Article  PubMed  CAS  Google Scholar 

  • Wolfe AD, Liston A (1998) Contributions of PCR-based methods to plant systematics and evolutionary biology. In: Soltis DE, Soltis PS, Doyle JJ (eds) Plant molecular systematics II. Kluwer, Boston, pp 43–86

    Google Scholar 

  • Wu ZY (1988) Hengduan mountain flora and her significance. J Jpn Bot 63:297–311

    Google Scholar 

  • Wu ZY, Wu SG (1996) A proposal for new floristic kingdom (realm). In: Zhang AL, Wu SG (eds) Floristic characteristics and diversity of east Asian plants. Springer-Verlag, Hongkong, China Higher Education Press, Beijing, pp 3–42

  • Xia T, Chen SL, Chen SY, Ge XJ (2005) Genetic variation within and among populations of Rhodiola alsia (Crassulaceae) native to the Tibetan plateau as detected by ISSR makers. Biochem Genet 43:87–101

    Article  PubMed  CAS  Google Scholar 

  • Xue DW, Ge XJ, Hao G, Zhang CQ (2004) High genetic diversity in a rare, narrowly endemic primrose species: Primula interjacens (Primulaceae) by ISSR analysis. Acta Bot Sin 46:1163–1169

    CAS  Google Scholar 

  • Yeh FC, Yang R, Boyle T (1999) PopGene. Microsoft Windows-based freeware for population genetic analysis. Release 1.31. University of Alberta, Edmonton

    Google Scholar 

  • Zhang RZ, Zheng D, Yang QY, Liu YH (1997) Physical geography of Hengduan mountains. Science Press, Beijing

    Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the National Natural Science Foundation of China (Nos. 30470125, 40671066) and the Natural Science Foundation of Guangdong Province (No. 31255).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, FY., Ge, XJ., Gong, X. et al. Strong Genetic Differentiation of Primula sikkimensis in the East Himalaya–Hengduan Mountains. Biochem Genet 46, 75–87 (2008). https://doi.org/10.1007/s10528-007-9131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-007-9131-9

Keywords

Navigation