Skip to main content
Log in

Molecular Cloning and Single Nucleotide Polymorphism Detection of Buffalo DGAT1 Gene

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

We report molecular cloning and single nucleotide polymorphism detection of the buffalo DGAT1 gene. Diacylglycerol acyltransferase (DGAT1) is considered the key enzyme in controlling the rate of synthesis of triglycerides. The DGAT1 gene was recently identified as a strong functional candidate gene affecting milk yield and composition in cattle. A full-length buffalo DGAT1 genomic DNA was amplified by iterative PCR based on homolog cloning. The buffalo DGAT1 gene comprises 17 exons and spans approximately 8.3 kb. The genomic structures of DGAT1 are highly conserved among mammal species. The deduced protein of buffalo DGAT1 contains 489 amino acids, showing high-sequence similarity with mammal homologs. Through PCR-SSCP analysis and sequencing, seven polymorphic positions were detected in the complete genomic region of buffalo DGAT1, and their frequencies were observed from a collection of 117 buffalo. The SNP (C/T) detected at position 11785 in exon 17 creates a substitution change for the amino acid sequence, resulting in an Ala residue (GCG) transition to a Val residue (GTG) in position 484 of buffalo DGAT1 protein. Information provided in this study will be useful in further studies to determine the role DGAT1 plays in the regulation of milk fat synthesis and quality improvement for milk in buffalo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Buhman KK, Smith SJ, Stone SJ, Repa JJ, Wong JS, Knapp FF, Burri BJ, Hamilton RL, Abumrad NA, Farese RV Jr (2002) DGAT1 is not essential for intestinal triacylglycerol absorption or chylomicron synthesis. J Biol Chem 277:25474–25479

    Article  PubMed  CAS  Google Scholar 

  • Cases S, Smith SJ, Zheng Y, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK (1998) Identification of a gene encoding an acyl CoA diacylglycerol acyltransferase, a key enzyme in triacylglicerol synthesis. Proc Natl Acad Sci USA 95:13018–13023

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Farese RV Jr (2000) DGAT and triglyceride synthesis: a new target for obesity treatment? Trends Cardiovasc Med 10:188–192

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Smith SJ, Ladha Z, Jensen DR, Ferreira LD, Pulawa LK, McGuire JG, Pita R, Eckel RH, Farese RV Jr (2002a) Increased insulin and leptin sensivity in mice lacking acyl CoA: diacylglycerol acyltransfenase1. J Clin Invest 109:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Stone SJ, Zhou P, Buhman KK, Farese RV Jr (2002b) Dissociation of obesity and impaired glucose disposal in mice overexpressing acyl coenzyme a:diacylglycerol acyltransferase 1 in white adipose tissue. Diabetes 51:3189–3195

    Article  PubMed  CAS  Google Scholar 

  • Christa K, Georg T, Andreas W, Bernhard K, Georg E, Manfred S, Ruedi F (2004) Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics 167:1873–1881

    Article  Google Scholar 

  • Coppieters W, Riquet J, Arranz JJ, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Simon P, Wagenaar D, Georges M (1998) A QTL with major effect on milk yield and composition maps to bovine chromosome 14. Mamm Genome 9:540–544

    Article  PubMed  CAS  Google Scholar 

  • Furbass R, Winter A, Fries R, Kuhn C (2006) Alleles of the bovine DGAT1 variable number of tandem repeat associated with a milk fat QTL at chromosome 14 can stimulate gene expression. Physiol Genomics 25:116–120

    Article  PubMed  Google Scholar 

  • Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Simon P, Spelman R, Georges M, Snell R (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res 12:222–231

    Article  PubMed  CAS  Google Scholar 

  • Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, Kvasz A, Mni M, Simon P, Frere JM, Coppieters W, Georges M (2004) Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc Natl Acad Sci USA 101:2398–2403

    Article  PubMed  CAS  Google Scholar 

  • Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Ignatieva EV, Kolpakov FA, Podkolodny NA. (1998) Database on transcriptional regulation: TRANSFAC TRRD and COMPEL. Nucleic Acid Res 26:362–367

    Article  PubMed  CAS  Google Scholar 

  • Kuhn C, Thaller G, Winter A, Kaupe B, Erhardt G, Bennewitz J, Schwerin M, Fries R (2004) Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics 167:1873–1881

    Article  PubMed  Google Scholar 

  • Ludwig EH, Mahley RW, Palaoglu E, Ozbayrakci S, Balestra ME, Borecki IB, Innerarity TL, Farese RV Jr (2002) DGAT1 promoter polymorphism associated with alterations in body mass index, high density lipoprotein levels and blood pressure in Turkish women. Clin Genet 62:68–73

    Article  PubMed  Google Scholar 

  • Paquette J, Giannoukakis N, Polychronakos C, Vafiadis P, Deal C (1998) The INS 5′ variable number of tandem repeats is associated with IGF2 expression in humans. J Biol Chem 273:14158–14164

    Article  PubMed  CAS  Google Scholar 

  • Simsek S, Bleeker PM, van der Schoot CE, von dem Borne AE (1994) Association of a variable number of tandem repeats (VNTR) in glycoprotein Ib alpha and HPA-2 alloantigens. Thromb Haemost 72:757–761

    PubMed  CAS  Google Scholar 

  • Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, Sanan DA, Raber J, Eckel RH, Farese RV Jr (2000) Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nat Genet 25:87–90

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Winter A, Kramer W, Kollers S, Kata S, Durstewitz G, Buitkamp J, Womack JE, Thaller G, Fries R (2002) Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA: DGAT1 with variation at a quantitative trait locus for milk fat content. Proc Natl Acad Sci 99:9300–9305

    Article  PubMed  CAS  Google Scholar 

  • Yan BX, Deng XN, Fei J, Hu XX, Wu CX, Li N (2003) Single nucleotide polymorphism analysis in chicken growth hormone gene and its associations with growth and carcass traits. Chin Sci Bull 48:1561–1564

    Article  CAS  Google Scholar 

  • Yang X, Fyodorov D, Deneris ES (1995) Transcriptional analysis of acetylcholine receptor a3 gene promoter motifs that bind Sp1 and AP2. J Biol Chem 270:8514–8520

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Boichard D, Hoeschele I, Ernst C, Eggen A, Murkve B, Witte LA, Grignola FE, Uimari P, Thaller G, Bishop MD (1998) Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree. Genetics 149:1959–1973

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Natural Scientific Foundation of China and National High Technology Development Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Additional information

Jing Yuan and Jun Zhou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, J., Zhou, J., Deng, X. et al. Molecular Cloning and Single Nucleotide Polymorphism Detection of Buffalo DGAT1 Gene. Biochem Genet 45, 611–621 (2007). https://doi.org/10.1007/s10528-007-9100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-007-9100-3

Keywords

Navigation