Skip to main content
Log in

Phylogeography of Wild Musk Shrew (Suncus Murinus) Populations in Asia Based on Blood Protein/Enzyme Variation

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The musk shrew (Suncus murinus) is an insectivore species that inhabits tropical and subtropical Asia widely. To clarify the genetic relationship among wild musk shrew populations, we examined the electrophoretic variants of biparentally inherited genetic markers at 10 loci coding for eight blood proteins/enzymes in a total of 639 animals and compared the results obtained from the mitochondrial DNA data. The principal-component analysis performed using the allele frequency data revealed that the 17 populations could be divided into two major groups, a South Asian group and a Southeast Asian group that includes several island populations bound by Myanmar. The degrees of genetic divergence among populations were higher within the Southeast Asian group than within the South Asian group. This finding was incongruent with the mtDNA diversity. Analysis conducted at the individual level showed that a shrew from the central region in Myanmar that carries a South Asian type of mtDNA showed the electrophoretic variants specific to the Southeast Asian group, suggesting that this region is a contact zone between the two major groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Awasthi M, Bhat KV, Anand RK (1998) Genetic heterogeneity in the Indian Mus musculus. Biochem Genet 36:245–258

    Article  PubMed  CAS  Google Scholar 

  • Berg EE, Hamrick JL (1997) Quantification of genetic diversity at allozyme loci. Can J For Res 27:415–424

    Article  CAS  Google Scholar 

  • Berry RJ (1986) Genetics of insular populations of mammals, with particular reference to differentiation and founder effects in British small mammals. Biol J Linn Soc 28:205–230

    Google Scholar 

  • Berry RJ, Peters J (1977) Heterogeneous heterozygosities in Mus musculus populations. Proc R Soc Lond B 197:485–503

    Article  PubMed  CAS  Google Scholar 

  • Britton-Davidian J, Hadeau JH, Croset H, Thaler L (1989) Genetic differentiation and origin of Robertsonian populations of the house mouse (Mus musculus domesticus Rutty). Genet Res 53:29–44

    Article  PubMed  CAS  Google Scholar 

  • Fetzner JW, Crandall KA (2003) Linear habitats and the nested clade analysis: An empirical evaluation of geographic versus river distances using an ozark crayfish (Decapoda: Cambaridae). Evolution 57:2101–2118

    PubMed  CAS  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations?. Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • González-Astorga J, Vovides AP, Cruz-Angon A, Octavio-Aguilar P, Iglesias C (2005) Allozyme variation in the three extant populations of the narrowly endemic cycad Dioon angustifolium Miq. (Zamiaceae) from North-eastern Mexico. Annals of Botany 95:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (2001) Fstat: A program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html

  • Gysels ES, Hellemans B, Pampoulie C, Volckaert FAM (2004) Phylogeography of the common goby, Pomatoschistus microps, with particular emphasis on the colonization of the Mediterranean and the North Sea. Mol Ecol 13:403–417

    Article  PubMed  CAS  Google Scholar 

  • Harris H, Hopkinson DA (1976) Handbook of enzyme electrophoresis in human genetics. North-Holland Publishing, Amsterdam

    Google Scholar 

  • Hutchison CA III, Newbold JE, Potter SS, Edgell MH (1974) Maternal inheritance of mammalian mitochondrial DNA. Nature 251:536–538

    Article  PubMed  CAS  Google Scholar 

  • Iseki R, Kondo K (1984a) Genetic variants found in plasma α-amylase and erythrocyte carbonic anhydrase in the musk shrew (Suncus murinus). Exp Anim 33:91–95

    CAS  Google Scholar 

  • Iseki R, Kondo K (1984b) Genetic polymorphism of the vitamin D binding protein (Gc) in the musk shrew (Suncus murinus). Anim Blood Groups Biochem Genet 15:55–61

    PubMed  CAS  Google Scholar 

  • Ishikawa A, Namikawa T (1991) Postnatal growth pattern of F1 hybrids of a cross between two strains of large and small musk shrews, Suncus murinus. Exp Anim 40:223–230

    CAS  Google Scholar 

  • Ishikawa A, Akadama I, Namikawa T, Oda S (1989) Development of a laboratory line (SRI line) derived from the wild house musk shrews, Suncus murinus, indigenous to Sri Lanka. Exp Anim 38:231–237

    CAS  Google Scholar 

  • Ishikawa A, Yamagata T, Namikawa T (1991) An attempt at reciprocal crosses between laboratory strains of large and small musk shrews (Suncus murinus): Influence of body weight difference between sexes on mating success. Exp Anim 40:145–152

    CAS  Google Scholar 

  • Kawamoto Y, Hongo A, Toukura Y, Kariya Y, Torii E, Inamura T, Yamamoto N (2005) Genetic differentiation among Andean Camelid populations measured by blood protein markers. Rep Soc Res Native Livestock 22:41–51

    Google Scholar 

  • Kondo M, Kawamoto Y, Nozawa K, Matsubayashi K, Watanabe T, Griffiths O, Stanley MA (1993) Population genetics of crab-eating macaques (Macaca fascicularis) on the island of Mauritius. Am J Primatol 29:167–182

    Article  Google Scholar 

  • Kurachi M, Yamagata T, Kawamoto Y, Mannen H, Kurosawa Y, Tanaka K, Nishibori M, Nomura K, Namikawa T, Eang S, Euy S, Bun S, Eang S, Kao V, Chaun V, Seng B, Chea B, Bun T, Chhum-Phith L (2006) Morphological, mitochondrial DNA and blood protein variants of wild musk shrews (Suncus murinus) in Cambodia. Rep Soc Res Native Livestock 23:125–143

    Google Scholar 

  • Kurachi M, Chau BL, Dang VB, Dorji T, Yamamoto Y, Maung MN, Maeda Y, Chhum-Phith L, Namikawa T, and Yamagata T (2007) Population structure of wild musk shrews (Suncus murinus) in Asia based on mitochondrial DNA variation, with research in Cambodia and Bhutan. Biochem. Genet. 45(3/4):165–183

    Article  PubMed  CAS  Google Scholar 

  • Lambert SM, Borba EL, Machado MC, Andrade SCDS (2006) Allozyme diversity and morphometrics of Melocactus paucispinus (Cactaceae) and evidence for hybridization with M. concinnus in the Chapada Diamantia, North-eastern Brazil. Annals of Botany 97:389–403

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Nozawa K, Shotake T (1990) Genetic differentiation among local populations of Asian elephant. Z Zool Syst Evolut-forsch 28:40–47

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GenePop (version 1.2): Population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Schaschl H, Kaulfus D, Hammer S, Suchentrunk F (2003) Spatial patterns of mitochondrial and nuclear gene pools in chamois (Rupicapra r. rupicapra) from the Eastern Alps. Heredity 91:125–135

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2000 Manual: A software for population genetics data analysis. Genetics and Biometry Laboratory Dept. of Anthropology and Ecology, University of Geneva

    Google Scholar 

  • Shaw CR, Prasad R (1970) Starch gel electrophoresis of enzymes: A compilation of recipes. Biochem Genet 4:297–320

    Article  PubMed  CAS  Google Scholar 

  • Shotake T (1981) Population genetical study of natural hybridization between Papio anubis and P. hamadryas. Primates 22:285–308

    Article  Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the mantel test of matrix correspondence. Syst Zool 35:627–632

    Article  Google Scholar 

  • Tsubota Y, Namikawa T (1988) Alleles at plasma α-amylase locus (Amy-1) of the house musk shrew (Suncus murinus): Frequency and new variants in laboratory lines and local Asian populations. Exp Anim 37:159–164

    CAS  Google Scholar 

  • Tsubota Y, Namikawa T, Nishida T (1986) Morphology and reproduction of wild musk shrews, Suncus murinus, in Sri Lanka. Rep Soc Res Native Livestock 11:241–250

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Yamagata T, Ohishi K, Faruque MO, Masangkay JS, Ba-Loc C, Vu-Binh D, Mansjoer SS, Ikeda H, Namikawa T (1995) Genetic variation and geographic distribution on the mitochondrial DNA in local populations of the musk shrews, Suncus murinus. Jap J Genet 70:321–337

    Article  CAS  Google Scholar 

  • Yamagata T, Nakai K, Tanaka K, Namikawa T, Yamamoto Y, Son HV, Ba-Loc C, Nam NH, Vu-Binh D (1999) Morphology and mitochondrial DNA variation of the wild musk shrews in Vietnam. Rep Soc Res Native Livestock 17:179–185

    Google Scholar 

  • Yamagata T, Kurachi M, Tanaka K, Maeda Y, Nay W, Than H, Than D, Maung MN (2004) Genetic differentiation of wild musk shrews in Myanmar based on morphology and mitochondrial DNA variation. Rep Soc Res Native Livestock 21:257–266

    Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) PopGene version 1.31: Microsoft Windows-based freeware for population genetic analysis, quick user guide. University of Alberta, Centre for International Forestry Research

  • Yong HS (1971) Chromosome polymorphism in the Malayan house shrews, Suncus murinus (Insectivora, Soricidae). Experientia 27:589–591

    Article  PubMed  CAS  Google Scholar 

  • Yosida TH (1982) Cytogenetical studies on Insectivora, II: Geographic variation of chromosomes in the house shrew, Suncus murinus (Soricidae), in East, Southeast and Southwest Asia, with a note on the karyotype evolution and distribution. Jap J Genet 57:101–111

    Google Scholar 

Download references

Acknowledgments

We greatly thank Ms. Sakie Kawamoto for her instruction in electrophoresis methods. This research was conducted with the help of the Society for Researches on Native Livestock and supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Nos. 16201046, 15405033, and 14405029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Yamagata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurachi, M., Kawamoto, Y., Tsubota, Y. et al. Phylogeography of Wild Musk Shrew (Suncus Murinus) Populations in Asia Based on Blood Protein/Enzyme Variation. Biochem Genet 45, 543–563 (2007). https://doi.org/10.1007/s10528-007-9096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-007-9096-8

Keywords

Navigation