Biochemical Genetics

, Volume 45, Issue 1–2, pp 93–102 | Cite as

Mitochondrial DNA Distinction of Northeastern China Roe Deer, Siberian Roe Deer, and European Roe Deer, to Clarify the Taxonomic Status of Northeastern China Roe Deer

  • Chao-Ting Xiao
  • Ming-Hai Zhang
  • Yan FuEmail author
  • Hung-Son Koh

Partial sequences of the mitochondrial control region of northeastern China roe deer were analyzed to determine the degree of genetic diversity. Fourteen haplotypes were observed. The haplotype diversity was high (h = 0.872), nucleotide diversity was medium (p i  = 0.0108), and the average Tamura–Nei nucleotide distance among them was 1.9%, indicating that genetic diversity of roe deer from northeastern China was relatively high and that the effective population size was large historically. To clarify the northeastern China roe deer's taxonomic status, these 14 haplotypes were compared with 31 haplotypes published in Genbank from Europe, Siberia, and Korea. The average genetic distance between haplogroups of northeastern China and European roe deer (5.8%) was more than twice that between northeastern China and Siberian roe deer (2.7%), indicating sufficient variation to consider roe deer of northeastern China and Siberia as a single species (Capreolus pygargus), distinct from European roe deer (Capreolus capreolus). This is the first presentation of mtDNA data for roe deer in northeastern China, which will be helpful in investigations of genetic diversity and clarifications of the taxonomic status of roe deer in the whole of China.


Capreolus pygargus taxonomic status northeastern China roe deer European roe deer mitochondrial DNA 



This work was supported by the Rhinoceros and Tiger Conservation Fund, USA (98210-2-G191).


  1. Bandelt, H. L., Forster, P., and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16:37–48.PubMedGoogle Scholar
  2. Blagojevic, J., and Vujosevic, M. (2004). B chromosomes and developmental homeostasis in the yellow-necked mouse, Apodemus flavicollis (Rodentia, Mammalia): Effects on nonmetric traits. Heredity 93:249–254.PubMedCrossRefGoogle Scholar
  3. Douzery, E., and Randi, E. (1997). The mitochondrial control region of cervidae: Evolutionary patterns and phylogenetic content. Mol. Biol. Evol. 14:1154–l166.PubMedGoogle Scholar
  4. Fagundes, V., Camacho, J. P., and Yonenaga-Yassuda, Y. (2004). Are the dotlike chromosomes in Trinomys iheringi (Rodentia, Echimyidae) B chromosomes? Cytogenet. Genome Res. 106:159–164.PubMedCrossRefGoogle Scholar
  5. Fakler, P., and Schreiber, A. (1997). Allozyme heterozygosity in two isolated populations of roe deer (Capreolus capreolus) from the Netherlands. Neth. J. Zool. 47:1–8.CrossRefGoogle Scholar
  6. Graphodatsky, A. S. (1990). Karyotypical relationships between Cervidae. J. Zool. 69:101–114.Google Scholar
  7. Groves, C. P., and Grubb P. (1987). Relationships of the living deer. In Wemmer, C. M. (ed.), Biology and Management of the Cervidae, Smithsonian Institution Press, Washington, DC, pp. 21–59.Google Scholar
  8. Gustavsson, I., and Sundt, C. O. (1968). Karyotypes in five species of deer (Alces alces L., Capreolus capreolus L., Cervus elaphus L., Cervus nippon nippon Temm., and Dama dama L.). Hereditas 60:233–248.PubMedCrossRefGoogle Scholar
  9. Hartl, G. B., Markov, G., Rubin, A., Findo, S., Lang, G., and Willing, R. (1993). Allozyme diversity within and among populations of three ungulate species (Cervus elaphus, Capreolus capreolus, Sus scrofa) of Southeastern and Central Europe. Z. Säugetierkunde 58:352–361.Google Scholar
  10. Hartl, G. B., and Reimoser, F. (1988). Biochemical variation in roe deer (Capreolus capreolus L.): Are r-strategists among deer genetically less variable than K-strategists? Heredity 60:221–227.PubMedGoogle Scholar
  11. Hartl, G. B., Reimoser, F., Willing, R., and Köller, J. (1991). Genetic variability and differentiation in roe deer (Capreolus capreolus L.) of Central Europe. Genet. Sel. Evol. 23:281–299.Google Scholar
  12. Herzog, S. (1988). The karyotype of the European roe deer (Capreolus capreolus L.). Z. Säugetierkunde 53:102–107.Google Scholar
  13. Hewison, A. J. M., and Danilkin, A. (2001). Evidence for separate specific status of European (Capreolus capreolus) and Siberian (C. pygargus) roe deer. Mamm. Biol. 66:13–21.Google Scholar
  14. Hewison, A. J. M. (1995). Isozyme variation in roe deer in relation to their population history in Britain. J. Zool. 235:279–288.CrossRefGoogle Scholar
  15. Jacob, B. B., Isaäc, J. N., Carla, Z., and Johannes, A. L. (1998). A satellite DNA element specific for roe deer (Capreolus capreolus). Chromosoma 107:1–5CrossRefGoogle Scholar
  16. Kartavtseva, I. V., and Roslik, G. V. (2004). A complex B chromosome system in the Korean field mouse, Apodemus peninsulae. Cytogenet. Genome Res. 106:271–278.PubMedCrossRefGoogle Scholar
  17. Koh, H. S., and Randi, E. (2001). Genetic distinction of roe deer (Capreolus pygargus Pallas) sampled in Korea. Mamm. Biol. 66:371–375.Google Scholar
  18. Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M. (2001). MEGA2.1: Molecular evolutionary genetics analysis software, Arizona State University, Tempe.Google Scholar
  19. Li, C. S., Ma, L. J., Zhou, H. M., and Yu, F. G. (2002). Biologic attributes of roe deer. Anim. Sci. Vet. Med. 19:54–57.Google Scholar
  20. Lorenzini, R., Lovari, S., and Masseti, M. (2002). The rediscovery of the Italian roe deer: Genetic differentiation and management implications. Ital. J. Zool. 69:367–379.Google Scholar
  21. Lorenzini, R., Patalano, M., Apollonio, M., and Lazzarone, V. (1993). Genetic variability of roe deer Capreolus capreolus in Italy: Electrophoretic survey on populations of different origin. Acta Theriol. 38(2):141–151.Google Scholar
  22. Lorenzini, R., San Josè, C., Braza, F., and Aragón, S. (2003). Genetic differentiation and phylogeography of roe deer in Spain, as suggested by mitochondrial DNA and microanalysis. Ital. J. Zool. 70:89–99.CrossRefGoogle Scholar
  23. Ma, Y. Q. (1986). Mammal List in Heilongjiang Province, Heilongjiang Science and Technology Press, Harbin, China.Google Scholar
  24. Nies, G., Zachos, F. E., and Hartl, G. B. (2005). The impact of female philopatry on population differentiation in the European roe deer (Capreolus capreolus) as revealed by mitochondrial DNA and allozymes. Mamm. Biol. 70:130–134.Google Scholar
  25. Petrosian, V. G., Tokarskaia, O. N., Danilkin, A. A., and Ryskov, A. P. (2002). Quantitative analysis of genetic parameters in populations of European (Capreolus capreolus L.) and Siberian (Capreolus pygargus Pall.) roe deer with RAPD markers. Genetika 38:812–819.PubMedGoogle Scholar
  26. Randi, E., Alves, P. C., Carranza, J., Milosevic-Zlatanovic, S., Sfougaris, A., and Mucci, N. (2004). Phylogeography of roe deer (Capreolus capreolus) populations: The effects of historical genetic subdivisions and recent nonequilibrium dynamics. Mol. Ecol. 13:3071–3083.PubMedCrossRefGoogle Scholar
  27. Randi, E., Lucchini, V., and Diong, C. H. (1996). Evolutionary genetics of the Suiformes as reconstructed using mtDNA sequencing. J. Mamm. Evol. 3:163–194.CrossRefGoogle Scholar
  28. Randi, E., Pierpaoli, M., and Danikin, A. (1998). Mitochondrial DNA polymorphism in populations of Siberian and European roe deer (Capreolus pygargus and C. capreolus). Heredity 80:429–437.PubMedCrossRefGoogle Scholar
  29. Rozas, J., and Rozas, R. (2003). DNASP: DNA polymorphism analysis by the coalescent and other methods. Bioinformatics 19:2496–2497.PubMedCrossRefGoogle Scholar
  30. Sheng, H. L. (1992). Chinese Deer, East China Normal University Press, Shanghai.Google Scholar
  31. Shou, Z. H. (1962). List of Chinese Economic Animals: Mammals, Science Press, BeijingGoogle Scholar
  32. Sokolov, V. E. (1978). Chromosome differences of two subspecies of roe deer Capreolus capreolus capreolus L. and Capreolus capreolus pygargus Pallas. J. Zool. 57:1109–1112.Google Scholar
  33. Sokolov, V. E., and Gromov, V. S. (1990). The contemporary ideas on roe deer (Capreolus Gray, 1821) systematization: Morphological, ethological and hybridolohigical analysis. Mammalia 54:431–444.CrossRefGoogle Scholar
  34. Tamura, K., and Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512–526.PubMedGoogle Scholar
  35. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The clustal × windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876–4882.CrossRefGoogle Scholar
  36. Tokarskaia, O. N., Efremova, D. A., Kan, N. G., Danilkin, A. A., Sempere, A., Petrosian, V. G., Semenova, S. K., and Ryskov, A. P. (2000). Variability of multilocus DNA markers in populations of the Siberian (Capreolus pygargus Pall.) and European (C. capreolus L.) roe deer. Genetika 36:1520–1530.PubMedGoogle Scholar
  37. Vernesi, C., Pecchioli, E., Caramelli, D., Tiedemann, R., Randi, E., and Bertorelle, G. (2002). The genetic structure of natural and reintroduced roe deer (Capreolus capreolus) populations in the Alps and central Italy, with reference to the mitochondrial DNA phylogeography of Europe. Mol. Ecol. 11:1285–1297.PubMedCrossRefGoogle Scholar
  38. Vujosevic, M., and Blagojevic, J. (2004). B chromosomes in populations of mammals. Cytogenet. Genome Res. 106:247–256.PubMedCrossRefGoogle Scholar
  39. Wang, M., Lang, G., and Schreiber, A. (2002). Temporal shifts of DNA-microsatellite allele profiles in roe deer (Capreolus capreolus L.) within three decades. J. Zool. Syst. Evol. Res. 40:232–236.CrossRefGoogle Scholar
  40. Wang, M., and Schreiber, A. (2001). The impact of social structure and habitat fragmentation on the population genetics of roe deer (Capreolus capreolus L.) in Central Europe. Heredity 86:703–715.PubMedCrossRefGoogle Scholar
  41. Wang, Y. X. (2003). A Complete Checklist of Mammal Species and Subspecies in China: A Taxonomic and Geographic Reference, China Forestry Publishing House, Beijing.Google Scholar
  42. Wang, Z. R., and Du, R. F. (1983). Karyotypes of Cervidae and their evolution. Acta Zool. Sinica 29:214–221.Google Scholar
  43. Wilson, D. E., and Reeder D. M. (1993). Mammal Species of the World: A Taxonomic and Geographic Reference, 2nd ed., Smithsonian Institution Press, Washington, DC.Google Scholar
  44. Zhang, M. H., Xiao, C. T., and Koh, H. S. (2005). Taxonomic status of roe deer in northeastern China based on mitochondrial DNA sequences. Acta Theriol. Sinica 25:14–19.Google Scholar
  45. Zheng, Z. X. (1982). Taxonomy of Vertebrate Animals in China, Science Press, Beijing.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Chao-Ting Xiao
    • 1
  • Ming-Hai Zhang
    • 2
  • Yan Fu
    • 1
    Email author
  • Hung-Son Koh
    • 3
  1. 1.College of Animal Sciences, Zhejiang UniversityHangzhouP.R. China
  2. 2.College of Wildlife Resources, Northeast Forestry UniversityHarbinP.R. China
  3. 3.College of Nature Science, Chungbuk National UniversityCheongjuSouth Korea

Personalised recommendations