By hybridizing human adult testis cDNA microarrays with human adult and embryo testis cDNA probes, we identified a novel human testis gene, NYD-SP15. NYD-SP15 expression was 3.26-fold higher in adult than in fetal testis; however, there was almost no NYD-SP15 expression in the sperm. NYD-SP15 comprises 3364 base pairs, including a 1545 bp open reading frame encoding a 514 amino acid protein possessing 89% sequence identity with the mouse testis homologous protein. NYD-SP15 is located on human chromosome 13q14.2. The deduced structure of the protein contains two dCMP_cyt_deam domains, indicating a potential functional role for zinc ion binding. The gene is expressed variably in a wide range of tissues, with high expression levels in the testis. Sequence analysis revealed that NYD-SP15 is not a highly conserved protein, with its distribution in high-level species such as vertebrates including Homo, Mus, Rattus, and Canis. The results of semiquantitative polymerase chain reaction in mouse testis representing different developmental stages indicate that NYD-SP15 expression was developmentally regulated. These results suggest the putative NYD-SP15 protein may play an important role in testicular development and spermatogenesis and may be an important factor governing male infertility.








REFERENCES
Anway, M. D., Johnston, D. S., Crawford, D., and Griswold, M. D. (2001). Identification of a novel retrovirus expressed in rat Sertoli cells and granulosa cells. Biol. Reprod. 65:1289–1296.
Berg, J. M. (1986). Potential metal-binding domains in nucleic acid binding proteins. Science 232:485–487.
Berg, J. M. (1990). Zinc fingers and other metal-binding domains: Elements for interactions between macromolecules. J. Biol. Chem. 265:6513–6516.
Diatchenko, L., Lau, Y. F., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D., and Siebert, P. D. (1996). Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. U.S.A. 93:6025–6030.
Diatchenko, L., Lukyanov, S., Lau, Y. F., and Siebert, P. D. (1999). Suppression subtractive hybridization: A versatile method for identifying differentially expressed genes. Methods Enzymol. 303:349–380.
Eddy, E. M. (1998). Regulation of gene expression during spermatogenesis. Semin. Cell. Dev. Biol. 9:451–457.
Eickhoff, H., Schuchhardt, J., Ivanov, I., Meier-Ewert, S., O′Brien, J., Malik, A., Tandon, N., Wolski, E. W., Rohlfs, E., Nyarsik, L., Reinhardt, R., Nietfeld, W., and Lehrach, H. (2000). Tissue gene expression analysis using arrayed normalized cDNA libraries. Genome. Res. 10:1230–1240.
Escalier, D. (2001). Impact of genetic engineering on the understanding of spermatogenesis. Hum. Reprod. Update 7:191–210.
Grimmond, S., Van Hateren, N., Siggers, P., Arkell, R., Larder, R., Soares, M. B., de Fatima Bonaldo, M., Smith, L., Tymowska-Lalanne, Z., Wells, C., and Greenfield, A. (2000). Sexually dimorphic expression of protease nexin-1 and vanin-1 in the developing mouse gonad prior to overt differentiation suggests a role in mammalian sexual development. Hum. Mol. Genet. 9:1553–1560.
Hansis, C., Jahner, D., Spiess, A. N., Boettcher, K., and Ivell, R. (1998). The gene for the Alzheimer-associated beta-amyloid-binding protein (ERAB) is differentially expressed in the testicular Leydig cells of the azoospermic by w/w (v) mouse. Eur. J. Biochem. 258:53–60.
Heinemann, V., Xu, Y. Z., Chubb, S., Sen, A., Hertel, L. W., Grindey, G. B., and Plunkett, W. (1992). Cellular elimination of 2′,2′-difluorodeoxycytidine 5′-triphosphate: A mechanism of self-potentiation. Cancer Res. 52:533–539.
Hull, M. G., Glazener, C. M., Kelly, N. J., Conway, D. I., Foster, P. A., Hinton, R. A., Coulson, C., Lambert, P. A., Watt, E. M., and Desai, K. M. (1985). Population study of causes, treatment, and outcome of infertility. Br. Med. J. 29:1693–1697.
Isono, K. (1991). Current progress on nucleoside antibiotics. Pharmacol. Ther. 52:269–286.
Jamieson, G. P., Finch, L. R., Snook, M., and Wiley, J. S. (1987). Degradation of 1-beta-D-arabinofuranosylcytosine 5′-triphosphate in human leukemic myeloblasts and lymphoblasts. Cancer Res. 47:3130–3135.
Lawler, A. M., and Gearhart, J. D. (1998). Genetic counseling for patients who will be undergoing treatment with assisted reproductive technology. Fertil. Steril. 70:412–413.
Lewis, R. (1999). Human Genetics Concepts and Applications, 3rd ed., McGraw-Hill, Boston.
Liang, P., and Pardee, A. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971.
Martin-du Pan, R. C., and Campana, A. (1993). Physiopathology of spermatogenic arrest. Fertil. Steril. 60:937–946.
Moore, J. T., Silversmith, R. E., Maley, G. F., and Maley, F. (1993). T4-phage deoxycytidylate deaminase is a metalloprotein containing two zinc atoms per subunit. J. Biol. Chem. 4:2288–2291.
Okabe, M., Ikawa, M., and Ashkenas, J. (1998). Male infertility and the genetics of spermatogenesis. Am. J. Hum. Genet. 62:1274–1281.
Reichard, P. (1988). Interactions between deoxyribonucleotide and DNA synthesis. Annu. Rev. Biochem. 57:349–374.
Rockett, J. C., Christopher Luft, J., Brian Garges, J., Krawetz, S. A., Hughes, M. R., Hee Kirn, K., Oudes, A. J., and Dix, D. J. (2001). Development of a 950-gene DNA array for examining gene expression patterns in mouse testis. Genome. Biol. 2:Research 0014.1–0014.9.
Schroder, J. K., Seidelmann, M., Kirch, H. C., Seeber, S., and Schutte, J. (1998). Assessment of resistance induction to cytosine arabinoside following transfer and overexpression of the deoxycytidylate deaminase gene in vitro. Leuk. Res. 22:619–624.
Sha, J., Zhou, Z., Li, J., Yin, L., Yang, H., Hu, G., Luo, M., Chan, H. C., and Zhou, K. (2002). Identification of testis development and spermatogenesis-related genes in human and mouse testes using cDNA arrays. Mol. Hum. Reprod. 8:511–517.
Takahashi, K., and Nei, M. (2000). Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol. Biol. Evol. 17:1251–1258.
Vallee, B. L., and Auld, D. S. (1990). Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659.
Vallee, B. L., Coleman, J. E., and Auld, D. S. (1991). Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc. Natl. Acad. Sci. U.S.A. 88:999–1003.
Von Arnim, A. G., and Deng, X. (1993). Ring finger motif of Arabidopsis thaliana COP1 defines a new class of zinc-binding domain. J. Biol. Chem. 268:19626–19631.
Willson, K., and Ashworh, A. (1987). Mammalian spermatogenic gene expression. Trends Genet. 3:351–355.
Author information
Authors and Affiliations
Corresponding author
Additional information
These authors contributed equally to this work
Rights and permissions
About this article
Cite this article
Liu, Q., Liu, J., Cao, Q. et al. NYD-SP15: A Novel Gene Potentially Involved in Regulating Testicular Development and Spermatogenesis. Biochem Genet 44, 405–419 (2006). https://doi.org/10.1007/s10528-006-9038-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10528-006-9038-x