Skip to main content

Phylogenetic Relationships and Possible Hybrid Origin of Lycoris Species (Amaryllidaceae) Revealed by ITS Sequences

To examine interspecific relationships and test the hypothesis of hybrid origin within Lycoris species, this study used data from parsimony analyses with nuclear ITS sequences for 19 taxa representing 14 species of Lycoris and two outgroup taxa. The ITS sequences resolved three infrageneric clades. One clade included L. chinensis, L. longituba, L. longituba var. flava, L. anhuiensis, and L. aurea; the second one consisted of L. sprengeri, L. radiata, L. radiata var. radiata, L. radiata var. pumila, L. haywardii, L. rosea, L. sanguinea var. sanguinea, and L. sanguinea var. koreana; and the third included L. caldwellii, L. straminea, L. albiflora, L. flavescens, and two hybrids. The results strongly support the hypothesis that L. straminea originated from hybridization between L. chinensis and L. radiata var. pumila, and the allotriploid L. caldwellii and L. albiflora derived from hybridization between L. chinensis and L. sprengeri. As nucleotide additivity was observed in the artificial hybrids and several presumed hybrids, the likelihood of hybrid origin of Lycoris species is supported.

This is a preview of subscription content, access via your institution.

Fig. 1.

References

  • Baldwin B. G., Sanderson M. J., Porter J. M., Wojciechowski M. F., Campbell C. S., Donoghue M. J. (1995). The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny Ann. Missouri Bot. Gard. 82:247–277

    Article  Google Scholar 

  • Birnboim H. C., Doyle J. J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA Nucl. Acids Res. 7:1513–1522

    PubMed  CAS  Google Scholar 

  • Bose S., Flory W. S. (1963). A study of phylogeny and of karyotype evolution in Lycoris Nucleus 6:141–156

    Google Scholar 

  • Buchler E. S., Ippolito A., Holtsford T. P. (1997). The evolution of ribosomal rDNA: Divergent paralogues and phylogenetic implications Genetics 145:821–832

    Google Scholar 

  • Cox A. V., Pridgeon A. M., Albert V. A., Chase M. W. (1997). Phylogenetics of the slipper orchids (Cypripedioideae, Orchidaceae): Nuclear rDNA sequences Plant Syst. Evol. 208:197–223

    Article  Google Scholar 

  • Doyle J. J., Doyle J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue Phytochem. Bull. 19:11–15

    Google Scholar 

  • Felsenstein J. (1985). Confidence limits on phylogenies: An approach using the bootstrap Evolution 39:783–791

    Article  Google Scholar 

  • Fu C. X., Kong H. H., Qiu Y. X., Cameron K. M. (2005). Molecular phylogeny of the East Asian-North American disjunct Smilax sect. Nemexia (Smilacaceae) Int. J. Plant. Sci. 166:301–309

    CAS  Article  Google Scholar 

  • Hsu P. S., Kurita S., Yu Z. Z., Lin J. Z., (1994). Synopsis of the genus Lycoris (Amaryllidaceae) Sida 16:301–331

    Google Scholar 

  • Ito M., Kawamoto A., Kita Y., Yukawa T., Kurita S. (1999). Phylogenetic relationships of amaryllidaceae based on matK sequence data J. Plant. Res. 112:207–216

    CAS  Article  Google Scholar 

  • Kim K. J., Jansen R. K. (1994). Comparisons of phylogenetic hypothesis among different data sets in dwarf dandelions (Krigia Asteraceae): Additional information from internal transcribed spacer sequences of nuclear ribosomal DNA Plant Syst. Evol. 190:157–185

    CAS  Article  Google Scholar 

  • Kim M., Lee S. (1991). A taxonomical study of the Korean Lycoris (Amaryllidaceae) Kor. J. Plant Tax. 21:123–139

    Google Scholar 

  • Kurita S. (1986). Variation and evolution on the karyotype of Lycoris, Amaryllidaceae: I, General karyomorphological characteristics of the genus Cytologia 51:803–815

    Google Scholar 

  • Kurita S. (1987). Chromosome evolution in Lycoris Proc. Jap. Soc. Plant Tax. 4:8–9

    Google Scholar 

  • Kurita S. (1988). Variation and evolution in karyotype of Lycoris, Amaryllidaceae: VII, Modes of karyotype alteration within species and probable trend of karyotype evolution in the genus Cytologia 53:323–335

    Google Scholar 

  • Kurita S., Hsu P. S. (1996). Hybrid complexes in Lycoris Amaryllidaceae Am. J. Bot. 89:207

    Google Scholar 

  • Lee N. S., Kim M., Lee B. S., Park K. R. (2001). Isozyme evidence for the allotroploid origin of Lycoris flavescens (Amaryllidaceae) Plant. Syst. Evol. 227:227–234

    CAS  Article  Google Scholar 

  • Lin, J. Z., Yu, Z. Z., and Hsu, P. S. (1990). Hybridization and breeding of Lycoris. In He, S. A. et al. (eds.), Proc. Int . Symp. Bot. Gard., pp. 557–568

  • Liu Y., Hsu P. S. (1989). A study on karyotypes of the genus Lycoris Acta Phytotax. Sin. 27:257–264

    Google Scholar 

  • Lledó M. D., Davis A. P., Crespo M. B., Chase M. W., Fay M. F. (2004). Phylogenetic analysis of Leucojum and Galanthus (Amaryllidaceae) based on plastid matK and nuclear ribosomal spacer (ITS) DNA sequences and morphology Plant Syst. Evol. 246:223–243

    Article  Google Scholar 

  • McDade L. A. (1992). Hybrids and phylogenetic systematics II: The impact of hybrids on cladistic analysis Evolution 4:1329–1346

    Article  Google Scholar 

  • Meerow A. W., Clayton J. R. (2004). Generic relationships of the baccate-fruited Amaryllidaceae (tribe Haemantheae) Plant Syst Evol 244:141–155

    CAS  Article  Google Scholar 

  • Meerow A. W., Snijman D. A. (2001). Phylogeny of Amaryllidaceae tribe Amaryllideae based on nrDNA ITS sequences and morphology Am. J. Bot. 88:2321–2330

    CAS  Google Scholar 

  • Meerow A. W., van der Werff H. (2004). Pucara (Amaryllidaceae) reduced to synonymy with Stenomesson on the basis of nuclear and plastid DNA spacer sequences, and a new related species of Stenomesson Syst. Bot. 29:511–517

    Article  Google Scholar 

  • Meerow A. W., Fay M. F., Guy C. L., Li Q. B., Zaman F. Q., Chase M. W. (1999). Systematics of Amaryllidaceae based on cladistic analysis of plastid sequence data Am. J. Bot. 86:1325–1345

    PubMed  CAS  Article  Google Scholar 

  • Meerow A. W., Guy C. L., Li Q. B., Yang S-L. (2000). Phylogeny of the American Amaryllidaceae based on nrDNA ITS sequences Syst. Bot. 25:708–726

    Article  Google Scholar 

  • Meerow A. W., Guy C. L., Li Q-B., Clayton J. R. (2002). Phylogeny of the tribe Hymenocallideae (Amaryllidaceae) based on morphology and molecular characters Ann. Missouri Bot. Gard. 89:400–413

    Article  Google Scholar 

  • Meerow A. W., Lehmiller D., Clayton J. R. (2003). Phylogeny and biogeography of Crinum L. (Amaryllidaceae) inferred from plastid and nuclear non-coding DNA sequences Bot. J. Linnean Soc. 141:349–363

    Article  Google Scholar 

  • Mummenhoff K., Linder P., Friesen N., Bowman J. L., Lee J. Y., Franzke A. (2004). Molecular evidence for bicontinental hybridogenous genomic constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand Am. J. Bot. 91:254–261

    CAS  Google Scholar 

  • Rogers S. O., Bendich A. J. (1987). Ribosomal RNA genes in plants: Variability in copy number and in the intergenic spacer Plant Mol. Biol. 9:509–520

    CAS  Article  Google Scholar 

  • Schlotterer C. (1998). Ribosomal DNA probes and primers. In: Karp A., Isaac P. G., Ingram D. S. (eds), Molecular Tools for Screening Biodiversity. Chapman & Hall, an imprint of Thomson Science, Boundary Row, London, UK, pp. 267–276

    Google Scholar 

  • Swofford D. L. (2001). PAUP. Phylogenetic Analysis Using Parsimony. Version 4.0b10. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  • Tsi, Z. H., and Meerow, A. W. (2000). Amaryllidaceae. In Wu, C. Y., and Raven, P. H. (eds.), Flora of China, Beijing Science Press and Missouri Botanical Garden Press 24, pp. 264

  • Volkov R. A., Borisjuk N. V., Panchuk I. I., Schweizer D., Hemleben V. (1999). Elimination and rearrangement of parental rDNA in the alloteraploid Nicotiana tabacum Mol. Biol. Evol. 16:311–320

    PubMed  CAS  Google Scholar 

  • Wendel J. F., Schnabel A., Seelanan T. (1995). An unusual ribosomal DNA sequence from Gossypium gossypiodes reveals ancient, cryptic, intergenomic introgression Mol. Phyl. Evol. 4:298–313

    CAS  Article  Google Scholar 

  • White T. J., Bruns T., Lee S., Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M., Gelfand D., Sninsky J., White T. (eds.), PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, Calif. pp. 315–322

    Google Scholar 

  • Wissemann V. (1999). Genetic constitution of Rosa sect. Caninae (R. canina, R. jundzillii) and sect. Gallicanae (R. gallica) J. Appl. Bot. 73:191–196

    CAS  Google Scholar 

  • Xu Y., Hu Z. B., Huang X. L., Fan G. J. (1982). New taxa of the genus Lycoris from China Acta. Phytotxa. Sin. 20:196–198

    Google Scholar 

Download references

Acknowledgments

We extend special thanks to Dr. Siro Kurita (Chiba University, Japan), Mr. Luhuan Lou, and Mrs. Jinzhen Lin for kindly providing samples of some species in this study. We thank Dr. Alan W. Meerow (National Germplasm Repository, USDA, ARS-SHRS) for providing the ITS sequence of Ungernia flava and giving comments on the manuscript. The study was supported by grants from the National Science Foundation of China (grants 39870079 and 30170062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxin Fu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shi, S., Qiu, Y., Li, E. et al. Phylogenetic Relationships and Possible Hybrid Origin of Lycoris Species (Amaryllidaceae) Revealed by ITS Sequences. Biochem Genet 44, 198–208 (2006). https://doi.org/10.1007/s10528-006-9023-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-006-9023-4

Keywords

  • Lycoris
  • ITS
  • interspecific hybridization
  • phylogenetic relationships