Skip to main content
Log in

Determination of the Flow Parameters of a Scattering Liquid in a Microfluidic Blood Vessel Phantom Based on Laser Speckle Contrast Imaging

  • Published:
Biomedical Engineering Aims and scope

The use of laser speckle-contrast imaging (LSCI) in studies of cerebral vessels in vitro using a microfluidic phantom is discussed. An LSCI device is shown to be able to recover values from recorded speckle patterns in conditions of stepwise gradation of the flow of a scattering liquid. These studies yielded a regression curve for flow and recorded speckle-contrast imaging-based values calculated using a spatial algorithm; accuracy parameters of this curve are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mennes, O. A., van Netten, J. J., van Baal, J. G., and Steenbergen, W., "Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging," Physiol. Meas., 40, No. 6, Article ID 065002 (2019).

  2. Ruaro, B., Sulli, A., Alessandri, E., Pizzorni, C., Ferrari, G., and Cutolo, M., "Laser speckle contrast analysis: A new method to evaluate peripheral blood perfusion in systemic sclerosis patients," Ann. Rheum. Dis., 73, No. 6, 1181–1185 (2014).

    Article  PubMed  Google Scholar 

  3. Eriksson, S., Nilsson, J., Iindell, G., and Sturesson, C., "Laser speckle contrast imaging for intraoperative assessment of liver microcirculation: A clinical pilot study," Med. Devices (Auckl.), 7, No. 1, 257–261 (2014).

    PubMed  Google Scholar 

  4. Piavchenko, G., Kozlov, I., Dremin, V., Stavtsev, D., Seryogina, E., Kandurova, K., Shupletsov, V., Lapin, K., Alekseyev, A., Kuznetsov, S., Bykov, A., Dunaev, A., and Meglinski, I., "Impairments of cerebral blood flow microcirculation in rats brought on by cardiac cessation and respiratory arrest," J. Biophotonics, 14, No. 12, Article ID e202100216 (2021).

  5. Konovalov, A. N., Gadzhiagaev, V. S., Grebenev, F. V., Stavtsev, D. D., Piavchenko, G. A., Gerasimenko A. Yu., Telyshev, D. V., Meglinski, I. V., and Eliava, S. S., "Laser speckle contrast imaging in neurosurgery: A systematic review," World Neurosurg., 171, 35–40 (2022).

    Article  PubMed  Google Scholar 

  6. Stavtsev, D. D., Konovalov, A. N., Blinova, E. V., Piavchenko, G. A., Golodnev, G. E., Zalogin, S. D., Gorina, A. V., Lapin, K. N., Vagner, S. A., Grebenev, F. V., Meglinski, I. V., Gerasimenko, A. Yu., Telyshev, D. V., and Kuznetsov, S. L., "Laser speckle contrast imaging for intraoperative monitoring of cerebral blood flow," Bull. Russ. Acad. Sci. Physics, 86, No. 1, S229–S233 (2022).

    Article  CAS  Google Scholar 

  7. Ramirez-San-Juan, J. C., Mendez-Aguilar, E., Salazar-Hermenegildo, N., Fuentes-Garcia, A., Ramos-Garcia, R., and Choi, B., "Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics," Biomed. Opt. Express, 4, No. 10, 1883–1889 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bernier, M., Cunnane, S. C., and Whittingstall, K., "The morphology of the human cerebrovascular system," Hum. Brain Mapp., 39, No. 12, 4962–4975 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liebert, A., Zolek, N., Wojtkiewicz, S., and Maniewski, R., "Estimation of speed distribution of particles moving in an optically turbid medium using decomposition of a laser-Doppler spectrum," in: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE (2007), pp. 4080–4082.

  10. Vaz, P. G., Humeau-Heurtier, A., Figueiras, E., Correia, C., and Cardoso, J., "Effect of static scatterers in laser speckle contrast imaging: An experimental study on correlation and contrast," Phys. Med. Biol., 63, No. 1, Article ID 015024 (2017).

  11. Parthasarathy, A. B., Tom, W. J., Gopal, A., Zhang, X., and Dunn, A. K., "Robust flow measurement with multi-exposure speckle imaging," Optics Express, 16, No. 3, 1975–1989 (2008).

    Article  PubMed  Google Scholar 

  12. Van As, K., Simons, B. A., Kleijn, C. R., Kenjeres, S., and Bhattacharya, N., "The dependence of speckle contrast on velocity: A numerical study," J. Eur. Opt. Soc., 18, No. 2, 11 (2022).

  13. Dunn, A. K., "Laser speckle contrast imaging of cerebral blood flow," Ann. Biomed. Eng., 40, 367–377 (2012).

    Article  PubMed  Google Scholar 

  14. Kim, D. and Park, S. H., "A microfluidics-based pulpal arteriole blood flow phantom for validation of doppler ultrasound devices in pulpal blood flow velocity measurement," J. Endod., 42, No. 11, 1660–1666 (2016).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Galyastov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 57, No. 2, March–April, 2023, pp. 36–39.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galyastov, A.A., Stavtsev, D.D., Kozlov, I.O. et al. Determination of the Flow Parameters of a Scattering Liquid in a Microfluidic Blood Vessel Phantom Based on Laser Speckle Contrast Imaging. Biomed Eng 57, 127–131 (2023). https://doi.org/10.1007/s10527-023-10283-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-023-10283-x

Navigation