Skip to main content
Log in

Antimicrobial Efficacy of Exposure of Medical Metal Implants to Direct Electric Current

  • Published:
Biomedical Engineering Aims and scope

The antimicrobial effect of direct electric current passing through metal implantable medical devices was evaluated. An in vitro study showed that the maximum antimicrobial effect on S. aureus (54.2% average microbial growth inhibition) was achieved at a current of 300 μA applied for 1 min; the maximum antimicrobial effect on E. coli (57.3% average microbial growth inhibition), at 150 μA for 3 min; on P. aeruginosa (40.8%), at 150 μA for 1 min. The study showed that the use of metal medical implants as electrodes has an antimicrobial effect on various pathogenic microorganisms. Thus, exposure to direct electric current can be used for antibacterial treatment of orthopedic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bushnev, S. V., Zagorodnyi, N. V., Burtsev, A. V., Stogov, M. V., Ovchinnikov, E. N., and Gubin, A. V., “Import substitution of products for traumatology and orthopedics in the Russian Federation: Challenges and unresolved issues,” Gen. Ortoped., 26, No. 2, 161-165 (2020).

    Article  Google Scholar 

  2. Goriainov, V., Cook, R., Latham, J. M., Dunlop, D. G., and Oreffo, R. O. C., “Bone and metal: An orthopaedic perspective on osseointegration of metals,” Acta Biomater., 10, No. 10, 4043-4057 (2014).

    Article  CAS  Google Scholar 

  3. Katsuura, Y. and Qureshi, S. A., “Additive manufacturing for metal applications in orthopaedic surgery,” J. Am. Acad. Orthop. Surg., 28, No. 8, e349-e355 (2020).

    Article  Google Scholar 

  4. Kaur, M. and Singh, K., “Review on titanium and titanium based alloys as biomaterials for orthopaedic applications,” Mater. Sci. Eng. C Mater. Biol. Appl., 102, 844-862 (2019).

    Article  CAS  Google Scholar 

  5. Guillory, R. J. 2nd, Sikora-Jasinska, M., Drelich, J. W., and Goldman, J., “In vitro corrosion and in vivo response to zinc implants with electropolished and anodized surfaces,” ACS Appl. Mater. Interf., 11, No. 22, 19884-19893 (2019).

    Article  CAS  Google Scholar 

  6. Hallock, K., Vaughn, N. H., Juliano, P., and Marks, J. G. Jr., “Metal hypersensitivity and orthopedic implants: Survey of orthopedic surgeons,” Dermatitis, 28, No. 1, 76-80 (2017).

    Article  Google Scholar 

  7. Rony, L., Lancigu, R., and Hubert, L., “Intraosseous metal implants in orthopedics: A review,” Morphologie, 102, No. 339, 231-242 (2018).

    Article  CAS  Google Scholar 

  8. Kumar, S., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., and Kim, K. H., “Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects,” Mater. Sci. Eng. C Mater. Biol. Appl., 106, 110154 (2020).

  9. Lewallen, E. A., Riester, S. M., Bonin, C. A., Kremers, H. M., Dudakovic, A., Kakar, S., Cohen, R. C., Westendorf, J. J., Lewallen, D. G., and Wijnen, A. J., “Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants,” Tissue Eng. Part B Rev., 21, No. 2, 218-230 (2015).

    Article  Google Scholar 

  10. Tran, P. A., O’Brien-Simpson, N., Palmer, J. A., Bock, N., Reynolds, E. C., Webster, T. J., Deva, A., Morrison, W. A., and O’Connor. A. J., “Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: In vitro and in vivo assessment,” Int. J. Nanomed., 14, 4613-4624 (2019).

    Article  CAS  Google Scholar 

  11. Gayuk, V. D., Klyushin, N. M., and Burnashov, S. I., “Soft tissue inflammation around the transosseous elements and wire-induced osteomyelitis (literature review),” Gen. Ortoped., 25, No. 3, 407-412 (2019).

    Article  Google Scholar 

  12. Soldatov, Yu. P., Stogov, M. V., Ovchinnikov, E. N., Gubin, A. V., and Gorodnova, N. V., “Ilizarov apparatus for external fixation: Evaluation of clinical efficacy and safety (literature review),” Gen. Ortoped., 25, No. 4, 588-599 (2019).

    Article  Google Scholar 

  13. Haseeb, M., Butt, M. F., Altaf, T., Muzaffar, K., Gupta, A., and Jallu, A., “Indications of implant removal: A study of 83 cases,” Int. J. Health Sci. (Qassim), 11, No. 1, 1-7 (2017).

    Google Scholar 

  14. Peña-Martinez, V., Lara-Arias, J., Vilchez-Cavazos, F., Álvarez-Lozano, E., Montes de Oca-Luna, R., and Mendoza-Lemus, Ó., “Interosseous electrostimulation in a model of lengthening with external fixation,” Cir. Cir., 85, No. 2, 127-134 (2017).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Stogov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 55, No. 5, Sep.-Oct., 2021, pp. 16-19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, E.N., Godovykh, N.V., Dyuryagina, O.V. et al. Antimicrobial Efficacy of Exposure of Medical Metal Implants to Direct Electric Current. Biomed Eng 55, 323–327 (2022). https://doi.org/10.1007/s10527-022-10128-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-022-10128-z

Navigation