Skip to main content
Log in

Identification of Enlargement of the Ventricular System of the Brain Using Machine Learning

  • Published:
Biomedical Engineering Aims and scope

Deep learning is an actively developing technology of machine learning. Its medical applications are the subject of ever increasing research worldwide. The algorithm for detection of enlargement of the ventricular system of the brain was tested using 200 series of digital MRI brain scan images captured in T2-weighted mode in the axial plane. The obtained digital data were divided into three parts: 1) training set; 2) validation set used to determine when to stop learning and select a model in terms of the best parameter; 3) test set for qualimetric assessment of the model. The accuracy of predicting the deviation from normal (i.e., the enlargement of the ventricular system of the brain) was 97.5%; sensitivity, 96.3%; specificity, 98.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rekate, H. L., “The definition and classification of hydrocephalus: A personal recommendation to stimulate debate,” Cerebrospinal Fluid Res., 5, No. 1, 1-7 (2008).

    Article  Google Scholar 

  2. Adams, R., Fisher, C., Hakim, S., et al., “Symptomatic occult hydrocephalus with normal cerebrospinal fluid pressure: A treatable syndrome,” N. Engl. J. Med., 273, No. 3, 117-126 (1965).

    Article  CAS  Google Scholar 

  3. Bir, S. C., Patra, D. P., Maiti, T. K., et al., “Epidemiology of adult-onset hydrocephalus: Institutional experience with 2001 patients,” Neurosurg. Focus, 41, No. 3, E5 (2016).

  4. Dewan, M. C., Rattani, A., Mekary, R., et al., “Global hydrocephalus epidemiology and incidence: Systematic review and meta-analysis,” J. Neurosurg., 130, No. 4, 1065-1079 (2018).

    Article  Google Scholar 

  5. Martin-Laez, R., Caballero-Arzapalo, H., Lopez-Menendez, L. A., et al., “Epidemiology of idiopathic normal pressure hydrocephalus: A systematic review of the literature,” World Neurosurg., 84, No. 6, 2002-2009 (2015).

    Article  Google Scholar 

  6. Klassen, B. T. and Ahlskog, J. E., “Normal pressure hydrocephalus: How often does the diagnosis hold water?” Neurology, 77, No. 12, 1119-1125 (2011).

  7. Lam, S., Reddy, G. D., Lin, Y., et al., “Management of hydrocephalus in children with posterior fossa tumors,” Surg. Neurol. Int., 6, Supplement 11, 346-348 (2015).

  8. Dorner, L., Fritsch, M. J., Stark, A. M., et al., “Posterior fossa tumors in children: How long does it take to establish the diagnosis?” Child’s Nervous System, 23, No. 8, 887-890 (2007).

  9. Prasad, K. S. V., Ravi, D., Pallikonda, V., et al., “Clinicopathological study of pediatric posterior fossa tumors,” J. Pediatr. Neurosci., 12, No. 3, 245-250 (2017).

    Article  Google Scholar 

  10. Prabhuraj, A., Sadashiva, N., Kumar, S., et al., “Hydrocephalus associated with large vestibular schwannoma: Management options and factors predicting requirement of cerebrospinal fluid diversion after primary surgery,” J. Neurosci. Rural Pract., 8, Supplement 1, 27-32 (2017).

  11. Hu, J., Western, S., and Kesari, S., “Brainstem glioma in adults,” Front. Oncol., 6, 180 (2016).

    Article  Google Scholar 

  12. Murphy, K. P., Machine Learning: A Probabilistic Perspective, MIT Press (2012).

  13. Krizhevsky, A., Sutskever, I., and Hinton, G. E., “Imagenet classification with deep convolutional neural networks,” Adv. Neural Info. Proc. Syst., 25, 1097-1105 (2012).

    Google Scholar 

  14. Kohli, M., Prevedello, L. M., Filice, R. W., et al., “Implementing machine learning in radiology practice and research,” Am. J. Roentgenol., 208, No. 4, 754-760 (2017).

    Article  Google Scholar 

  15. Erickson, B. J., Korfiatis, P., Akkus, Z., et al., “Machine learning for medical imaging,” RadioGraphics, 37, No. 2, 505-515 (2017).

  16. Lakhani, P. and Sundaram, B., “Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks,” Radiology, 284, No. 2, 574-582 (2017).

  17. Zhang, N., Yang, G., Gao, Z., et al., “Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI,” Radiology, 291, No. 3, 606-617 (2019).

  18. Soffer, S., Ben-Cohen, A., Shimon, O., et al., “Convolutional neural networks for radiologic images: A radiologist’s guide,” Radiology, 290, No. 3, 590-606 (2019).

  19. Cicero, M., Bilbily, A., Colak, E., et al., “Training and validating a deep convolutional neural network for computer-aided detection and classification of abnormalities on frontal chest radiographs,” Invest. Radiol., 52, No. 5, 281-287 (2017).

    Article  Google Scholar 

  20. Yosinski, J., Clune, J., Bengio, Y., et al., “How transferable are features in deep neural networks?” in: NIPS’14: Proc. 27th Int. Conf. on Neural Information Processing Systems, Vol. 2 (2014), pp. 3320-3328.

  21. Russakovsky, O., Deng, J., Su, H., et al., “Imagenet large scale visual recognition challenge,” Int. J. Comput. Vis., 115, No. 3, 211-252 (2015).

    Article  Google Scholar 

  22. Selvaraju, R. R., Cogswell, M., Das, A., et al., “Grad-cam: Visual explanations from deep networks via gradient-based localization,” in: Proc. IEEE Int. Conf. on Computer Vision (2017), pp. 618-626.

  23. Komotar, R. J., Starke, R. M., and Connolly, E. S., “Brain magnetic resonance imaging scans for asymptomatic patients: Role in medical screening,” Mayo Clin. Proc., 83, No. 5, 563-565 (2008).

    Article  Google Scholar 

  24. Vernooij, M. W., Ikram, M. A., Tanghe, H. L., et al., “Incidental findings on brain MRI in the general population,” N. Engl. J. Med., 357, No. 18, 1821-1828 (2007).

    Article  CAS  Google Scholar 

  25. Brugulat-Serrat, A., Rojas, S., Bargallo, N., et al., “Incidental findings on brain MRI of cognitively normal first-degree descendants of patients with Alzheimer’s disease: A cross-sectional analysis from the alfa (Alzheimer and families) project,” BMJ Open, 7, No. 3, e013215 (2017).

  26. Celtikci, E., “A systematic review on machine learning in neuro-surgery: The future of decision-making in patient care,” Turk. Neurosurg., 28, No. 2, 167-173 (2018).

    PubMed  Google Scholar 

  27. Azimi, P. and Mohammadi, H. R., “Predicting endoscopic third ventriculostomy success in childhood hydrocephalus: An artificial neural network analysis,” J. Neurosurg. Pediatr., 13, 426-432 (2014).

    Article  Google Scholar 

  28. Habibi, Z., Ertiaei, A., Nikdad, M. S., et al., “Predicting ventricu-loperitoneal shunt infection in children with hydrocephalus using artificial neural network,” Child’s Nervous System, 32, 2143-2151 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Mishinov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 55, No. 4, Jul.-Aug., 2021, pp. 52-55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishinov, S.V., Demyanchuk, A.I., Pushkina, E.V. et al. Identification of Enlargement of the Ventricular System of the Brain Using Machine Learning. Biomed Eng 55, 297–301 (2021). https://doi.org/10.1007/s10527-021-10122-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-021-10122-x

Navigation