Skip to main content
Log in

A Mathematical Model for Estimating Physiological Parameters of Blood Flow through Rotary Blood Pumps

  • Published:
Biomedical Engineering Aims and scope

A mathematical model for estimating physiological parameters of blood flow through rotary blood pumps has been developed. The model is based on the flow–pressure head characteristics of the Sputnik pediatric rotary blood pump measured under static and dynamic conditions, which allows it to cover a wide range of states of the cardiovascular system. The model provides sensorless estimation of the flow–pressure head characteristics. For the Sputnik pediatric rotary blood pump, the accuracy of estimation of the flow and the pressure head averaged over a single cardiac cycle is R2 = 0.998 and R2 = 0.976, respectively. A ViVitro Pulse Duplicator SD2001-1 bench (ViVitro Inc., Victoria, Canada) has been used to verify the developed mathematical model. The verification yielded the following values of accuracy of estimation of parameters averaged over a single cardiac cycle: flow rate, R2 = 0.993; pressure head, R2 = 0.994.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giridharan et al., “Miniaturization of mechanical circulatory support systems,” Artif. Org., 36, No. 8, 731-758 (2012).

    Article  Google Scholar 

  2. Kirklin, J. K., Pagani, F. D., Kormos, R. L., et al., “Eighth annual INTERMACS report: Special focus on framing the impact of adverse events,” J. Heart Lung Transplant., 36, 1080-1086 (2017).

    Article  Google Scholar 

  3. Selishchev, S. V. and Telyshev, D. V., “Optimisation of the Sputnik-VAD design,” Int. J. Artif. Org., 39, No. 8, 407-414 (2016).

    Article  Google Scholar 

  4. Slaughter, M. S., Bartoli, C. R., Sobieski, M. A., et al., “Intraoperative evaluation of the Heartmate II flow estimator,” J. Heart Lung Transplant., 28, No. 1, 39-43 (2009).

    Article  Google Scholar 

  5. Wakisaka, Y., Okuzono, Y., Taenaka, Y., et al., “Noninvasive pump flow estimation of a centrifugal blood pump,” Artif. Org., 21, No. 7, 651-654 (1997).

    Article  Google Scholar 

  6. Lim, E., Karantonis, D. M., Reizes, J. A., et al., “Noninvasive average flow and differential pressure estimation for an implantable rotary blood pump using dimensional analysis,” IEEE Trans. Biomed. Eng., 55, No. 8, 2094-2101 (2008).

    Article  Google Scholar 

  7. Pektok, E. et al., “Remote monitoring of left ventricular assist device parameters after HeartAssist-5 implantation,” Artif. Org., 37, No. 9, 820-825 (2013).

    Google Scholar 

  8. Pennings, K. A., Martina, J. R., Rodermans, B. F., et al., “Pump flow estimation from pressure head and power uptake for the HeartAssist5, HeartMate II, and HeartWare VADs,” ASAIO J., 59, No. 4, 420-426 (2013).

    Article  Google Scholar 

  9. Schmid, D. M., Kaufmann, F., Amacher, R., et al., “Left ventricular assist devices: Challenges toward sustaining long-term patient care,” Ann. Biomed. Eng., 45, No. 8, 1836-1851 (2017).

    Article  Google Scholar 

  10. Telyshev, D., Denisov, M., Pugovkin, A., et al., “The progress in the novel pediatric rotary blood pump Sputnik development,” Artif. Org., 42, No. 4, 432-443 (2018).

    Article  Google Scholar 

  11. Telyshev, D. V., Denisov, M. V., and Selishchev, S. V., “The effect of rotor geometry on the H–Q curves of the Sputnik implantable pediatric rotary blood pump,” Biomed. Eng., 50, No. 6, 420-424 (2017).

    Article  Google Scholar 

  12. Denisov, M. V., Selishchev, S. V., Telyshev, D. V., et al., “Development of medical and technical requirements and simulation of the flow–pressure characteristics of the Sputnik pediatric rotary blood pump,” Biomed. Eng., 50, No. 5, 296-299 (2017).

    Article  Google Scholar 

  13. Ayre, P. J., Lovell, N. H., and Woodard, J. C., “Non-invasive flow estimation in an implantable rotary blood pump: A study considering nonpulsatile and pulsatile flows,” Physiol. Meas., 24, No. 1, 179-189 (2003).

    Article  Google Scholar 

  14. AlOmari, A. H., Savkin, A. V., Karantonis, D. M., et al., “Non-invasive estimation of pulsatile flow and differential pressure in an implantable rotary blood pump for heart failure patients,” Physiol. Meas., 30, No. 4, 371-386 (2009).

    Article  Google Scholar 

  15. Malagutti, N., Karantonis, D. M., Cloherty, S. L., et al., “Non-invasive average flow estimation for an implantable rotary blood pump: A new algorithm incorporating the role of blood viscosity,” Artif. Org., 31, No. 1, 45-52 (2007).

    Article  Google Scholar 

  16. Granegger, M., Moscato, F., Casas, F., et al., “Development of a pump flow estimator for rotary blood pumps to enhance monitoring of ventricular function,” Artif. Org., 36, No. 8, 691-699 (2012).

    Article  Google Scholar 

  17. Pirbodaghi, T., “Mathematical modeling of rotary blood pumps in a pulsatile in vitro flow environment,” Artif. Org., 41, No. 8, 711-716 (2017).

    Article  Google Scholar 

  18. Stepanoff, A. J., Centrifugal and Axial Flow Pumps: Theory, Design, and Application, J. Wiley, New York (1948).

    Google Scholar 

  19. Nelik, L., Centrifugal and Rotary Pumps: Fundamentals with Applications, Boca Raton, Florida (1999).

    Book  Google Scholar 

  20. Pillay, P. and Krishnan, R., “Modeling, simulation and analysis of permanent magnet motor drives. I. The brushless DC motor drives,” IEEE Trans. Ind. Appl., 25, No. 2, 263-273 (1989).

    Google Scholar 

  21. Choi, S., Boston, J. R., Thomas, D., et al., “Modeling and identification of an axial flow blood pump,” Proc. Amer. Control Conf., 6, 3714-3715 (1997).

    Article  Google Scholar 

  22. Yoshizawa, M., Sato, T., Tanaka, A., et al., “Sensorless estimation of pressure head and flow of a continuous flow artificial heart based on input power and rotational speed,” ASAIO J., 48, No. 4, 443-448 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Telyshev.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 54, No. 3, May-Jun., 2020, pp. 7-10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telyshev, D.V. A Mathematical Model for Estimating Physiological Parameters of Blood Flow through Rotary Blood Pumps. Biomed Eng 54, 163–168 (2020). https://doi.org/10.1007/s10527-020-09996-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-020-09996-0

Navigation