Skip to main content

3D Ultrasound: Visualization of Volumetric Data

This article continues a previously published review, “3D ultrasound: Current state, emerging trends and technologies,” which was the first part in a cycle addressing 3D/4D ultrasound technologies. The first part explained the basic mechanisms for obtaining three-dimensional ultrasound images and considered the physical basis, advantages, and drawbacks associated with the use of transducers and the main methods of volumetric scanning. The present article describes the capabilities of the state-of-the-art diagnostic ultrasound scanners to visualize 3D/4D data.

This is a preview of subscription content, access via your institution.


  1. Osipov, L. V., Kulberg, N. S., Leonov, D. V., and Morozov, S. P., “3D ultrasound: Current state, emerging trends and technologies,” Biomed. Eng., 52, No. 3, 199-203 (2018).

    Google Scholar 

  2. Osipov, L. V., Ultrasound Diagnostic Devices: Modes, Methods, and Technologies [in Russian], Izomed, Moscow (2011).

    Google Scholar 

  3. Baba, K., Satoh, K., Sakamoto, S., Okai, T., and Ishii, S., “Development of an ultrasonic system for three-dimensional reconstruction of the fetus,” J. Perinat. Med., 17, No. 1, 19-24 (1989).

    Google Scholar 

  4. Werner, H., Marcondes, M., Daltro, P., Fazecas, T., Ribeiro, B. G., Nogueira, R., and Araujo Júnior, E., “Three-dimensional reconstruction of fetal abnormalities using ultrasonography and magnetic resonance imaging,” J. Matern. Fetal Neonatal Med. (2018); (accessed March 15, 2019).

  5. Dall’Asta, A., Schievano, S., Bruse, J. L., Paramasivam, G., Kaihura, C. T., Dunaway, D., and Lees, C. C., “Quantitative analysis of fetal facial morphology using 3D ultrasound and statistical shape modeling: A feasibility study,” Am. J. Obstet. Gynecol., 217, No. 1, 76.e1-76.e8 (2017).

  6. Birkeland, Е., Solteszova, V., Hönigmann, D., Gilja, O. H., Brekke, S., Ropinski, T., and Viola, I., “The ultrasound visualization pipeline – A survey,” ArXiv e-prints; arXiv: 1206.3975 (2012) (accessed March 15, 2019).

  7. Kulberg, N. S., Yakovleva, T. V., Kamalov, Yu. R., Sandrikov, V. A., Osipov, L. V., and Belov, P. A., “Development and trial of a new method of image enhancement for ultrasonic medical diagnostics,” Acoust. Phys., 55, No. 4-5, 538-546 (2009).

    Google Scholar 

  8. Huang, Q. and Zeng, Z., “A Review on real-time 3D ultrasound imaging technology,” BioMed Res. Int., Article ID 6027029 (2017).

  9. Singh, K. and Malhotra, N., Step by Step: 3D/4D Ultrasound in Obstetrics, Gynecology and Infertility, Jaypee Brothers Medical Publishers (2013), 2nd Edition.

  10. Takahiro, S., “Role of modern 3D echocardiography in valvular heart disease,” Korean J. Intern. Med., 29, No. 6, 685-702 (2014).

    Google Scholar 

  11. Takahiro, S., “3D echocardiography: the present and the future,” J. Cardiol., 52, No. 3 169-185 (2008).

    Google Scholar 

  12. Nasnikova, I. Yu. and Kharlap, S. I., “Ultrasound volumetric spatial visualization and the potential for its use in ophthalmology,” Med. Vizual., No. 3, 49-58 (2003).

  13. Pelz, J. O., Weinreich, A., Karlas, T., and Saur, D., “Evaluation of freehand B-mode and power-mode 3D ultrasound for visualisation and grading of internal carotid artery stenosis,” PLoS One, 12, No. 1, 1-11 (2017).

    Google Scholar 

  14. Caresio, C., Caballo, M., Deandrea, M., Garberoglio, R., Mormile, A., Rossetto, R., Limone, P., and Molinari, F., “Quantitative analysis of thyroid tumors vascularity: A comparison between 3D contrast-enhanced ultrasound and 3D Power Doppler on benign and malignant thyroid nodules,” Med. Phys., 45, No. 7, 3173-3184 (2018).

    Google Scholar 

  15. Grant, E. G., “Advanced techniques in 4D ultrasound: Fly Thru,” Toshiba, ULWP12028US [online resource], (accessed March 15, 2019).

  16. Tesarik, J., Mendoza-Tesarik, R., and Mendozaet, N., “Virtual sonographic embryoscopy: A new tool for evaluation of early pregnancy,” EC Gynaecology, 5, No. 2, 69-71 (2017).

    Google Scholar 

  17. Mindray [online resource], (accessed March 15, 2019).

  18. Samsung Medison [online resource], (accessed March 15, 2019).

  19. Philips [online resource], (accessed March 15, 2019).

  20. GE Healthcare [online resource], (accessed March 15, 2019).

  21. Achiron, R., Gindes, L., Zalel, Y., Lipitz, S., and Weisz, B., “Three- and four-dimensional ultrasound: New methods for evaluating fetal thoracic anomalies,” Ultrasound Obstet. Gynecol., 32, No. 1 36-43 (2008).

    Google Scholar 

  22. Dall’Asta, А., Paramasivam, G., and Lees, C. C., “Crystal Vue technique for imaging fetal spine and ribs,” Ultrasound Obstet. Gynecol., 47, No. 3, 383-384 (2016).

    Google Scholar 

  23. Simpson, J. M. and Miller, O., “Three-dimensional echocardiography in congenital heart disease,” Arch. Cardiovasc. Dis., 104, 45-56 (2011).

    Google Scholar 

  24. Alcazar, J. L., Pascual, M. A., Ajossa, S., de Lorenzo, C., Piras, A., Hereter, L., Juez, L., Fabbri, P., Graupera, B., and Guerriero, S., “Reproducibility of the International Endometrial Analysis Group Color Score for assigning the amount of flow within the endometrium using stored 3-dimensional volumes,” J. Ultrasound Med., No. 36, 1347-1354 (2017).

  25. Cariello, L., Montaguti, E., Cataneo, I., Dodaro, G., Margarito, E., Rizzo, N., and Youssef, A., “The levator–urethral gap measurement: Tomographic ultrasound imaging (TUI) versus Omniview-volume contrast imaging (VCI),” Ultrasound Obstet. Gynecol., 50, Supplement 1, 141 (2017).

  26. Fukuda, H., Numata, K., Hara, K., Nozaki, A., Kondo, M., Chuma, M., Nakano, M., Nozawa, A., Maeda, S., and Tanaka, K., “Comparison of vascularity observed using contrast-enhanced 3D ultrasonography and pathological changes in patients with hepatocellular carcinoma after sorafenib treatment,” J. Cancer, 9, No. 13, 2408-2414 (2018).

    Google Scholar 

  27. Shin, H. J., Kim, H. H., and Cha, J. H., “Current status of automated breast ultrasonography,” Ultrasonography, 34, No. 3, 165-172 (2015).

    Google Scholar 

  28. Araujo, E., Tonni, G., Bravo-Valenzuela, N. J., Da Silva Costa, F., and Meagher, S., “Assessment of fetal congenital heart diseases by 4-dimensional ultrasound using spatiotemporal image correlation: pictorial review,” Ultrasound Q., 34, No. 1, 11-17 (2018).

    Google Scholar 

  29. Yeo, L. and Romero, R., “Fetal intelligent navigation echocardiography (FINE): A novel method for rapid, simple, and automatic examination of the fetal heart,” Ultrasound Obstet. Gynecol., 42, No. 3, 268-284 (2013).

    Google Scholar 

  30. Dall’Asta, А., Paramasivam, G., and Lees, C. C., “Qualitative evaluation of Crystal Vue rendering technology in assessment of fetal lip and palate,” Ultrasound Obstet. Gynecol., 49, No. 4, 549-552 (2017).

    Google Scholar 

  31. “5D Heart Color: automatic examination of the fetal heart based on intelligent navigation technology,” Samsung Medison, Article ID CL201510-5DHeartColor (2015).

  32. Yeo, L., Luewan, S., and Romero, R., “Fetal intelligent navigation echocardiography (FINE) detects 98% of congenital heart disease,” J. Ultrasound Med., 37, No. 11, 2577-2593 (2018).

    Google Scholar 

  33. Yeo, L. and Romero, R., “Color and power Doppler combined with Fetal Intelligent Navigation Echocardiography (FINE) to evaluate the fetal heart,” Ultrasound Obstet. Gynecol., 50, No. 4, 476-491 (2017).

    Google Scholar 

  34. Veronese, P., Bogana, G., Cerutti, A., Yeo, L., Romero, R., and Gervasi, M. T., “A prospective study of the use of Fetal Intelligent Navigation Echocardiography (FINE) to obtain standard fetal echocardiography views,” Fetal Diagn. Ther., 41, No. 2, 89-99 (2017).

    Google Scholar 

  35. Kozlowski, P., Urheimz, S., and Samset, E., “Evaluation of a multi-view autostereoscopic real_time 3D ultrasound system for minimally invasive cardiac surgery guidance,” IEEE 14th International Symposium on Biomedical Imaging (2017), pp. 604-607.

  36. Remmele, M., Schmidt, E., Lingenfelder, M., and Martens, A., “The impact of stereoscopic imagery and motion on anatomical structure recognition and visual attention performance,” Anat. Sci. Educ., 11, No. 1 15-24 (2017).

  37. Hackett, M. and Proctor, M., “Three-dimensional display technologies for anatomical education: A literature review,” J. Sc. Educ. Technol., No. 25, 641-654 (2016).

  38. Leonov, D. V., Fin, V. A., and Gukasov, V. M., “The current state and trends in the development of ultrasound medical diagnostic devices,” Med. Vys. Tekhnol., No. 3, 8-13 (2014).

  39. Lange, T., Papenberg, N., Heldmann, S., Modersitzki, J., Fischer, B., Lamecker, H., and Schlag, P. M., “3D ultrasound-CT registration of the liver using combined landmark-intensity information,” Int. J. Comput. Assist. Radiol. Surg., 4, No. 1, 79-88 (2009).

    Google Scholar 

  40. Simpson, A. L. and Kingham, T. P., “Current evidence in image-guided liver surgery,” J. Gastrointest. Surg., 20, No. 6, 1265-1269 (2016).

    Google Scholar 

  41. Clements, L. W., Collins, J. A., Weis, J. A., Simpson, A. L., Adams, L. B., Jarnagin, W. R., and Miga, M. I., “Evaluation of model-based deformation correction in image-guided liver surgery via tracked intraoperative ultrasound,” J. Med. Imaging (Bellingham), 3, No. 1, 015003-1-015003-10 (2016).

  42. Marinetto, E., Uneri, A., De Silva, T., Reaungamornrat, S., Zbijewski, W., Sisniega, A., Vogt, S., Kleinszig, G., Pascau, J., and Siewerdsen, J. H., “Integration of free-hand 3D ultrasound and mobile C-arm cone-beam CT: Feasibility and characterization for real-time guidance of needle insertion,” Comput. Med. Imaging. Graph., 58, 13-22 (2017).

    Google Scholar 

  43. Leonov, D. V., Kulberg, N. S., Gromov, A. I., Morozov, S. P., and Kim, S. Yu., “ Causes of ultrasound Doppler twinkling artifact,” Acoust. Phys., 64, No. 1, 105-114 (2018).

    Google Scholar 

  44. Kulberg, N. S., Gromov, A. I., Leonov, D. V., Osipov, L. V., Usanov, M. S., and Morozov, S. P., “Ultrasound diagnostic mode for kidney stones and soft tissue calculi detection,” Radiol.-Prakt., 67, No. 1, 37-49 (2018).

    Google Scholar 

  45. Leonov, D., Kulberg, N., Gromov, A., Fin, V., Usanov, M., Kovbas, V., Sergunova, K., Strelkov, N., Vladzimirskiy, A., and Morozov, S., “Ultrasound stone detection: Discovery and analysis of two stone_related components in reflected signal and their role in etiology of twinkling artifact,” Int. J. Comput. Assist. Radiol. Surg., 13, Supplement 1, 10-11 (2018).

  46. Leonov, D. V., Kulberg, N. S., Gromov, A. I., Morozov S. P., and Vladzimirskiy, A. V., “Diagnostic mode detecting solid mineral inclusions in medical ultrasound imaging,” Acoust. Phys., 64, No. 5, 624-636 (2018).

    Google Scholar 

  47. Tsujimoto, F., “Microcalcifications in the breast detected by a color Doppler method using twinkling artifacts: some important discussions based on clinical cases and experiments with a new ultrasound modality called multidetector-ultrasonography,” J. Med. Ultrasonics, 41, No. 1, 99-108 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to D. V. Leonov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 54, No. 2, Mar.-Apr., 2020, pp. 51-55.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osipov, L.V., Kulberg, N.S., Leonov, D.V. et al. 3D Ultrasound: Visualization of Volumetric Data. Biomed Eng 54, 149–154 (2020).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: