Skip to main content

Advertisement

Log in

An Interferometric Device for Detecting Subgingival Caries

  • Published:
Biomedical Engineering Aims and scope

We report here studies confirming confirming the potential and relevance of the use of an interferometric device with a temporal coherence-limited radiation source for measurements in therapeutic dentistry. In vivo experimental studies of early subgingival caries in the maxillary and mandibular arches in the left- and right-sided canines were carried out. The distribution of the coefficient of reflection R over the depth of the gingiva with and without early caries was investigated. Experimental results were obtained on the detection of caries in the initial stages with an error of 2.1 μm. A scheme for the interferometric device is presented and the technical characteristics are given: measurement error, 2.1 μm; range of measurement of analysis depth, 0-4 mm; measurement frequency, 46 Hz; mean distance from the microlens to the object, 120 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maiorov, E. E., Kotov, I. R., and Khopov, V. V., “Interferometric studies of biological objects,” Nauch.-Tekhnich. Vestn. Inform. Tekhnol. Mekh. Optik., No. 15, 70-72 (2004).

  2. Afanas’ev, V. A., Optical Measurements [in Russian], Nedra, Moscow (1968).

    Google Scholar 

  3. Gelikonov, V. M, et al., “Optical coherent tomography for microinhomogeneities in biological tissues,” Pis’ma v ZhETF, 61, No. 2, 149-153 (1995).

  4. Hausler, G. and Lindner, M. W., “Coherence radar and spectral radar – new tools for dermatological diagnosis,” J. Biomed. Opt., 3, No. 1, 21-31 (1998).

    Article  Google Scholar 

  5. Bol’shakov, O. P., Kotov, I. R., and Khopov, V. V., “A system for measuring the surface relief and elasticity of the skin,” Med. Tekh., No. 5, 35-38 (1997).

  6. Majorov, E. E. and Prokopenko, V. T., “A coherence-limited inter-ferometer system for examination of biological objects,” Biomed. Eng., 46, No. 3, 109-111 (2012).

    Article  Google Scholar 

  7. Zakhar’evskii, A. N., Interferometers [in Russian], Oborongiz, Moscow (1952).

    Google Scholar 

  8. Maiorov, E. E., Prokopenko, V. T., Udakhina, S. V., Tsygankova, G. A., and Chernyak, T. A., “An optoelectronic computer system for detecting external agents in the subsurface layers of the skin,” Med. Tekh., No. 2, 7-10 (2016).

  9. Maiorov, E. E., Prokopenko, V. T., Mashek, A. C., Tsygankova, G. A., Kurlov, A. V., Khokhlova, M. V., Kirik, D. I., and Kapralov, D. D., “Experimental study of metrological characteristics of the automated interferometric system for measuring the surface shape of diffusely reflecting objects,” Measurement Techniques, 60, No. 10, 1016-1021 (2017).

    Article  Google Scholar 

  10. Kreopalova, G. V., Lazareva, N. L., and Puryaev, D. T., Optical Measurements [in Russian], Mashinostroenie, Moscow (1987).

    Google Scholar 

  11. Maiorov, E. E., Prokopenko, V. T., and Ushveridze, L. A., “Calculation of the scanning parameters for an interferometric system monitoring the shapes of diffusely reflecting objects,” Pribory, 145, No. 7, 23-25 (2012).

    Google Scholar 

  12. Maiorov, E. E. and Prokopenko, V. T., Interferometry of Diffusely Reflecting Objects [in Russian], NIU ITMO, St. Petersburg (2014).

    Google Scholar 

  13. Malacara, D., Optical Production Control [Russian translation], Sosnov, A. N. (ed.), Mashinostroenie, Moscow (1985).

  14. Maiorov, E. E., Prokopenko, V. T., and Ushveridze, L. A., “A system for the coherent processing of specklegrams for dental tissue surface examination,” Biomed. Eng., 47, No. 6, 304-306 (2014).

    Article  Google Scholar 

  15. Maiorov, E. E., Mashek, A. Ch., Udakhina, S. V., Tsygankova, G. A., Khaidarov, G. G., and Chernyak, T. A., “Development of a omputerized interference system for monitoring uneven surfaces,” Pribory, 185, No. 11, 26-31 (2015).

  16. Maiorov, E. E., Prokopenko, V. T., Mashek, A. Ch., Tsygankova, G. A., Kurlov, A. V., Khokhlova, M. V., Kirik, D. I., and Kapralov, D. D., “Experimental studies of the metrological characteristics of an automated interferometric system measuring the surface shapes of diffusely reflecting objects,” Izmer. Tekh., No. 10, 33-37 (2017).

  17. Maiorov, E. E., Mashek, A. Ch., Tsygankova, G. A., Polikarpova, A. A., Konstantinova, A. A., and Khokhlova, M. V., “Studies of a Michelson interferometer with a coherence-limited irradiation source for monitoring diffusely reflecting objects,” Izv. TulGU: Tekhn. Nauki, No. 4, 387-397 (2018).

  18. Maiorov, E. E., Mashek, A. Ch., Tsygankova, G. A., Abramyan, V. K., Khaidarov, G. G., Khaidarov, A. G., and Konstantinova, A. A., “Analysis of the interference signal of a coherence-limited system for monitoring uneven surfaces,” Izv. YuFU: Tekh. Nauki, No. 2, 221-233 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Maiorov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 53, No. 4, Jul.-Aug., 2019, pp. 23-26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maiorov, E.E., Shalamai, L.I., Dagaev, A.V. et al. An Interferometric Device for Detecting Subgingival Caries. Biomed Eng 53, 258–261 (2019). https://doi.org/10.1007/s10527-019-09921-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-019-09921-0

Navigation