The development and investigation of biosensors for the early and rapid diagnosis of a wide spectrum of diseases to provide significant reductions in mortality and loss of working time as a result of timely treatment is a current challenge in many countries. The active progress in biosensor technology is promoted by the fact that it is an interdisciplinary field exploiting advancements in very diverse areas of knowledge: from physiology to nanotechnology and electronics.
This is a preview of subscription content, access via your institution.
References
Biomedical Nanostructures [Russian translation], Gonsalves, K. E., Halberstadt, C. R., Laurencin, C. T., and Nair, L. S. (eds.), Binom, Knowledge Laboratory, Moscow (2012).
Gudkov, A. G., Zherdeva, V. V., Tikhomirov, V. G., et al., “Current directions in biosensor diagnosis in vivo,” Nanotekhnol. Razrabot. Primen. XXI Vek, No. 2, 20-28 (2016).
Varfolomeev, S. D., Evdokimov, Yu. M., and Ostrovskii, M. A., “Sensor biology, sensory technology, and the creation of novel sensory organs in humans,” Vestn. Ross. Akad,. Nauk, 70, No. 2, 99-108 (2000).
Gudkov, A. G., Shashurin, V. D., Agasieva, S. V., et al., “Use of resonant tunneling nanodiodes to increase the effectiveness of electromagnetic energy converters in invasive biosensor systems based on radio-frequency identification technology,” Nanotekhnol. Razrabot. Primen. XXI Vek, No. 2, 15-20 (2014).
Agasieva, S. V., Zybin, A. A., Tikhomirov, V. G., et al., “The concept of biosensor construction based on HEMT,” Nanotekhnol. Razrabot. Primen. XXI Vek, 9, No. 2, 13-18 (2017).
Agasieva, S. V., V’yuginov, V. N., Tikhomirov, V. G., et al., “Increases in the stability of GaN HEMT to elevated temperature,” Nanotekhnol. Razrabot. Primen. XXI Vek, 9, No. 2, 19-21 (2017).
V’yuginov, V. N., Gudkov, A. G., Zybin, A. A., et al., “Selection of circuit-design, design, and technological solutions in the development of an invasive transistor biosensor,” Elektromagn. Volny Elektron. Sist., 22, No. 4, 66-70 (2014).
Gudkov, A. G., Agasieva, S. V., Petrov, V. I., et al., “Studies of the potential for radio-frequency identification with passive labels for invasive biosensing,” Med. Tekh., No. 2, 26-29 (2015).
Gudkov, A. G., Tikhomirov, V. G., Agasieva, S. V., et al., “Studies of the characteristics of heterostructural transistors for biosensors by mathematical modeling,” Med. Fiz., No. 5, 82-86 (2017).
Agasieva, S. V., Gudkov, A. G., Ivanov, Y. A., et al., “Prospects for application of radio-frequency identification technology with passive tags in invasive biosensor systems,” Biomed. Eng., 49, No. 2, 26-29 (2015).
Tikhomirov, V. G., Gudkov, A. G., Agasieva, S. V., et al., “The sensitivity research of multiparameter biosensors based on HEMT by the mathematic modeling method,” J. Phys. Conf. Series, 917, 042016 (2017).
Yinghui Sun, Rongming Wang, and Kai Liu, “Substrate induced changes in atomically thin 2-dimensional semiconductors: Fundamentals, engineering, and applications,” Appl. Phys. Rev., 4, No. 1, 011301 (2017).
Kang, B. S., Wang, H. T., Pearton, S. J., et al., “Electrical detection of biomaterials using AlGaN/GaN HEMTs,” J. Appl. Phys., 104, No. 8, 031101 (2008).
Hung, S. C., Wang, Y. L., Hicks, B., Pearton S. J., et al., “Integration of selective area anodized AgCl thin film with AlGaN/GaN HEMTs for chloride ion detection,” Electrochem. Solid-State Lett., 11, No. 9, H241-H244 (2008).
Tikhomirov, V. G., Maleev, N. A., Kuz’menkov, A. G., et al., “Studies of the effects of the parameters of the gate region on the static characteristics of UHF field effect transistors based on pseudomorphic AlGaAs–InGaAs–GaAs heterostructures,” Fiz. Tekh. Poluprovod., 45, No. 10, 1405 (2011).
Tikhomirov, V., Zemlyakov, V., Volkov, V., et al., “Optimization of the parameters of HEMT GaN/AlN/AlGaN heterostructures for microwave transistors using numerical simulation,” Semiconductors, 50, No. 2, 244-248 (2016).
Kang, B. S., Wang, H. T., Gila, B. P., et al., “pH sensor using AlGaN/GaN high electron mobility transistors with Sc2O3 in the gate region,” Appl. Phys. Lett., 91, 012110 (2007).
Tao Kong, Yang Chen, Yiping Ye, et al., “An amperometric glucose biosensor based on the immobilization of glucose oxidase on the ZnO nanotubes,” Sensors and Actuators B, 138, 344-350 (2009).
Chu, B. H., Kang, B. S., Hung, S. C., et al., “Aluminum gallium nitride (GaN)/GaN high electron mobility transistor-based sensors for glucose detection in exhaled breath condensate,” J. Diabetes Sci. Technol., 4, No. 1, 171-179 (2010).
Fall, P. J. and Szerlip, H. M., “Lactic acidosis: from sour milk to septic shock,” J. Intensive Care Med., 20, 255-271 (2005).
Ma, S., Liao, Q., Liu, H., et al., “An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor,” Nanoscale, 4, 6415-6418 (2012).
Baur, B., Howgate, J., Eickhoffa M., et al., “Catalytic activity of enzymes immobilized on AlGaN/GaN solution gate field-effect transistors,” Appl. Phys. Meth., 89, 183901 (2006).
Gupta, S. K., Wu, H. H., Kwak, K. J., et al., “Interfacial design and structure of protein/polymer films on oxidized AlGaN surfaces,” J. Phys. D. Appl. Phys., 44, 034010 (2011).
Foster, C. M., Collazo, R., Sitar Z., et al., “Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization,” Langmuir, 29, 8377-8384 (2013).
Chih-Cheng Huang, Geng-Yen Lee, Jen-Inn Chyi, et al., “Study of protein-peptide binding affinity using AlGaN/GaN high electron mobility transistors,” ECS Trans., 50, No. 6, 223-232 (2013).
Makowski, M. S., Bryan, I., Sitar Z., et al., “Kinase detection with gallium nitride based high electron mobility transistors,” Appl. Phys. Lett., 103, 013701 (2013).
Wang, Y., Casal, P., Lu W., et al., “Toward single molecule detection in physiological buffer using planar FET biosensors,” in: Proceedings of the 71st Annual Device Research Conference (DRC 2013), IEEE Catalog Number: CFP13DRC-POD, 6 (2013).
Sarangadharana, I., Regmia, A., Yen-Wen Chena, et al., “High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors,” Biosens. Bioelectr., 100, 282-289 (2018).
Chu, C. H., Sarangadharan, I., Regmi A., et al., “Beyond the Debye length in high ionic strength solution: Direct protein detection with field-effect transistors (FETs) in human serum,” Sci. Rep., 7, No. 1, 5256 (2017).
Arden, W., Brillouet, M., Cogez P., et al., ITRS More-than-Moore whitepaper, The International Technology Roadmap for Semiconductors Consortium (2010); http://www.itrs.net, http://www.itrs.net/Links/2010ITRS/IRC-ITRS-MtM-v2%203. pdf.
Leamon, J. H. and Rothberg, J. M., “Cramming more sequencing reactions onto microreactor chips,” Chem. Rev., 107, 3367-3376 (2007).
Bergveld, P., “Thirty years of ISFETOLOGY – what happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuat. B. Chem., 88, 1-20 (2003).
Bausells, J., Carrabina, J., Errachid, A., and Merlos, A., “Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology,” Sens. Actuat. B. Chem., 57, No. 1-3, 56-62 (1999).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Meditsinskaya Tekhnika, Vol. 53, No. 3, May-Jun., 2019, pp. 33-36.
Rights and permissions
About this article
Cite this article
Gudkov, A.G., Agasieva, S.V., Tikhomirov, V.G. et al. Perspectives in the Development of Biosensors Based on AlGaN/GaN HEMT. Biomed Eng 53, 196–200 (2019). https://doi.org/10.1007/s10527-019-09908-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10527-019-09908-x