Advertisement

Biomedical Engineering

, Volume 52, Issue 6, pp 423–426 | Cite as

Measurement of Red Blood Cell Geometry Using Holographic Interferometry

  • E. E. MaiorovEmail author
  • M. S. Turovskaya
  • L. I. Shalamay
  • A. N. Litvinenko
  • T. A. Chernyak
  • G. A. Tsygankova
Article
  • 4 Downloads

Problems associated with changes in the shape and size of red blood cells in patients with atherosclerosis are considered. The applicability of physical optics techniques (in particular, holography) for the examination of red blood cells is discussed. An interferographic technique for analyzing the shape of red blood cells and estimating quantitatively their cross section and size is suggested. Experimental data on the comparative characteristics of red blood cells in normal and pathological states are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Serzhenko, V. I., Novikova, I. I., Vlasov, V. B., Efimov, V. S., and Semenova, T. I., “The aggregate state of blood and the microcirculation system in experimental atherosclerosis, its spontaneous regression, and hemosorption,” Byul. Eksp. Biol. Med., 101, No. 5, 542-554 (1986).Google Scholar
  2. 2.
    Krymskii, L. D., Nestaiko, G. V., and Rybalov, A. G., Scanning Electron Microscopy of Vessels and Blood [in Russian], Meditsina, Moscow (1976).Google Scholar
  3. 3.
    Lopukhin, Yu. M., Archanov, A. I., Vladimirov, Yu. A., and Kogan, E. M., Cholesteriosis [in Russian], Meditsina, Moscow (1983).Google Scholar
  4. 4.
    Francon, M., Laser Speckle and Application in Optics [Russian translation], Mir, Moscow (1980).Google Scholar
  5. 5.
    Maiorov, E. E. and Prokopenko, V. T., Interferometry of Diffusely Reflecting Objects [in Russian], NIU ITMO, St. Petersburg (2014).Google Scholar
  6. 6.
    Maiorov, E. E. and Prokopenko, V. T., “A limited-coherence interferometer system for examination of biological objects,” Biomed. Eng., 46, No. 3, 109-11 (2012).CrossRefGoogle Scholar
  7. 7.
    Maiorov, E. E., Prokopenko, V. T., and Sherstobitova, A. S., “A study of the optoelectronic system for decoding holographic interferograms,” Opt. Zh., 80, No. 3, 47-51 (2013).Google Scholar
  8. 8.
    Maiorov, E. E., Prokopenko, V. T., and Ushveridze, L. A., “A system for the coherent processing of specklegrams for dental tissue surface examination,” Biomed. Eng., 47, No. 6, 304-306 (2013).CrossRefGoogle Scholar
  9. 9.
    Prokopenko, V. T., Maiorov, E. E., Mashek, A. Ch., Udakhina, S. V., Tsygankova, G. A., Khaidarov, A. G., and Chernyak, T. A., “An optoelectronic device for monitoring geometry of diffusely reflecting objects,” Izv. VUZ. Priborostr., 59, No. 5, 388-394 (2016).Google Scholar
  10. 10.
    Prokopenko, V. T., Maiorov, E. E., Mashek, A. Ch., Tsygankova, G. A., Abramyan, V. K., Zaitsev, Yu. E., Khaidarov, A. G., and Khaidarov, G. G., “Use of shifted reference holographic interferometry for monitoring geometry of diffusely reflecting surfaces,” Izv. VUZ. Priborostr., 60, No. 4, 331-339 (2017).Google Scholar
  11. 11.
    Maiorov, E. E., Dagaev, A. V., Ponomarev, S. V., and Chernyak, T. A., “Shifing interferometer in phase-measuring devices and system for holographic interferogram decoding,” Nauch. Priborostr., 27, No. 2, 32-40 (2017).CrossRefGoogle Scholar
  12. 12.
    C. Vest, Holographic Interferometry [Russian translation], Mir, Moscow (1982).Google Scholar
  13. 13.
    Arsen’eva, I. V., Bol’shakov, O. P., Kotov, I. R., and Maiorova, O. V., “Use of holographic interferometry in biomedical studies,” in: Proc. XIII All-Russ. Conf. on Problems of Science and Higher Education, Vol. 1, SPbGTU (2009), p. 105.Google Scholar
  14. 14.
    Bol’shakov, O. P., Kotov, I. R., and Maiorova, O. V., “Coherent optical methods of information representation in applied anatomy and experimental surgery,” in: Proc. Sci. Conf. Innovative Technologies in Morphology, Vol. 2, VMA, St. Petersburg (2007), pp. 44-48.Google Scholar
  15. 15.
    Zlenko, A. N., Veremenko, A. P., and Metlushko, E. A., “Mathematical model of an expert system for optical instrument engineering,” in: Abs. Congr. of Young Scientists, Vol. 2, ITMO, St. Petersburg (2014), pp. 22-24.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. E. Maiorov
    • 1
    Email author
  • M. S. Turovskaya
    • 1
  • L. I. Shalamay
    • 2
  • A. N. Litvinenko
    • 3
  • T. A. Chernyak
    • 4
  • G. A. Tsygankova
    • 5
  1. 1.University of the Interparliamentary Assembly of the EurAsECSt. PetersburgRussia
  2. 2.Pavlov First Saint Petersburg State Medical UniversitySt. PetersburgRussia
  3. 3.Saint Petersburg University of the Ministry of Internal Affairs of the Russian FederationSt. PetersburgRussia
  4. 4.Saint Petersburg State University of Aerospace InstrumentationSt. PetersburgRussia
  5. 5.Naval Polytechnical InstitutePushkinSt. PetersburgRussia

Personalised recommendations