Skip to main content

Advertisement

Log in

Potential Use of Heart Contractions as a Source of Energy for Implantable Devices

  • Published:
Biomedical Engineering Aims and scope

We present an analysis of possible approaches to transforming heart contractions kinematics into electrical energy to supply implanted devices. Preclinical studies of cardiac kinematics were conducted. We conclude that it is possible to develop generators for microelectromechanical systems (MEMS) to increase the service life of lead-less pacemakers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bockeria, L. A., Revishvili, A. Sh., and Dubrovskii, I. A., “The state of electrocardiostimulation in Russia in 2010,” Vestn. Aritmol., No. 68, 77-80 (2012).

  2. Elmquist, R. and Senning, A., “Implantable pacemaker for the heart,” in: Medical Electronics. Proc. 2nd Int. Conf. on Medical Electronics, Paris, June, C. N. Smyth (ed.), Iliffe, London (1960), pp. 253-254.

  3. www.siemens.com/history/en/news/1045_pacemaker.htm (accessed November 16, 2018).

  4. Olivo, J., Carrara, S., and De Micheli, G., “Energy harvesting and remote powering for implantable biosensors,” IEEE Sens. J., 11, 1573-1586 (2011).

    Article  Google Scholar 

  5. Maiskaya, V., “Alternative energy sources. Harvesting of ‘stroke’ energy,” Elektr. Nauka, Tekhnol. Biznes, No. 8, 72-89 (2009).

  6. Dominguez-Nicola, S. M., Juarez-Aguirre, R., Herrera-May, A. L., Garcia-Ramirez, P., Figueras, E., Gutierrez-D, E. A,. Tapia, J. A., Trejo, A., and Manjarrez, E., “Respiratory magnetogram detected with a MEMS device,” Int. J. Med. Sci., 10, No. 11, 1445-1450 (2013).

  7. Gosline, A. H., Vasilyev, N. V., Veeramani, A., Wu, M., Schmitz, G., Chen, R., Arabagi, V., Del Nido, P. J., and Dupont, P. E., “Metal MEMS tools for beating-heart tissue removal,” in: EEE Int. Conf. Robot Autom., 10.1109/ICRA (2012).

  8. Romero, E., Warrington, R. O., and Neuman, M. R., “Energy scavenging sources for biomedical sensors,” Physiol. Meas., 30, No. 9, 35-62 (2009).

    Article  Google Scholar 

  9. Melzer, K., Renaud, A., Zurbuchen, S., Tschopp, C., Lehmann, J., Malatesta, D., Ruch, N., Schutz, Y., Kayser, B., and Mäde, U., “Alterations in energy balance from an exercise intervention with ad libitum food intake,” J. Nutr. Sci., 5, No. 7, 1-10 (2016).

    Google Scholar 

  10. Zurbuchen, A, Pfenniger, A., Stahel, A., Stoeck, C. T., Vandenberghe, S., Koch, V. M., and Vogel, R., “Energy harvesting from the beating heart by a mass imbalance oscillation generator,” Ann. Biomed. Eng., 41, No. 1, 131-141 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Le.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 52, No. 6, Nov.-Dec., 2018, pp. 36-38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bockeria, O.L., Potlovsky, K.G., Bazhin, M.A. et al. Potential Use of Heart Contractions as a Source of Energy for Implantable Devices. Biomed Eng 52, 412–415 (2019). https://doi.org/10.1007/s10527-019-09858-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-019-09858-4

Navigation