Skip to main content
Log in

Multiple Inter-Channel EEG Relationships and Their Application

  • Published:
Biomedical Engineering Aims and scope

In this article we propose an algorithm for the analysis of multiple relationships between electroencephalogram (EEG) channels. This algorithm identifies groups of linked channels and estimates the strength of relationships within these groups. This is a novel approach that can detect informative cortical zones for particular psychoneurological diseases. It can also be used to create new systems for processing EEG data and diagnose diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cover, K. S., Stam, C. J., and van Dijk, B. W., “Detection of very high correlation in the alpha band between temporal regions of the human brain using MEG,” Neuroimage, 22, No. 4, 1432-1437 (2004).

    Article  Google Scholar 

  2. Ramakrishnan, A. G. and Satyanarayana, J. V., “Reconstruction of EEG from limited channel acquisition using estimated signal correlation,” Biomed. Signal Proc. Contr., 27, 164-173 (2016).

    Article  Google Scholar 

  3. Kalauzi, A., Vuckovic, A., and Bojić, T., “EEG alpha phase shifts during transition from wakefulness to drowsiness,” Internat. J. Psychophysiol., 86, No. 3, 195-205 (2012).

    Article  Google Scholar 

  4. Angelopoulos, E., Koutsoukos, E., Maillis, A., Papadimitriou, G. N., and Stefanis, C., “Cortical interactions during the experience of auditory verbal hallucinations,” J. Neuropsychiatry Clin. Neurosci., 23, No. 3, 287-293 (2011).

    Article  Google Scholar 

  5. Vega-Zelaya, L., Garnés-Camarena, O., Sanz-Garcia, A., Ortega, G. J., and Pastor, J., Mathematical Foundations of Quantified Electroencephalography. In: Clinical Advances in Neurophysiology, AvidScience (2016).

  6. Ventouras, E. C., Margariti, A., Chondraki, P., Kalatzis, I., Economou, N. T., Tsekou, H., Paparrigopoulos, T., and Ktonas, P., “EEG-based investigation of brain connectivity changes in psychotic patients undergoing the primitive expression form of dance therapy: A methodological pilot study,” Cogn. Neurodyn., 9, No. 2, 231-248 (2015).

    Article  Google Scholar 

  7. Alonso, J. F., Mananas, M. A., Romero, S., Hoyer, D., Riba, J., and Barbanoj, M. J., “Drug effect on EEG connectivity assessed by linear and nonlinear couplings,” Hum. Brain Mapp., 31, No. 3, 487-497 (2010).

    Article  Google Scholar 

  8. Cruz, A. V., Mallet, N., Magill, P. J., Brown, P., and Averbeck, B. B., “Effects of dopamine depletion on information flow between the subthalamic nucleus and external globus pallidus,” J. Neurophysiol., 106, No. 4, 2012-2023 (2011).

    Article  Google Scholar 

  9. Bonita, J. D., Ambolode, II, L. C. C., Rosenberg, B. M., Cellucci, C. J., Watanabe, A. A., Rapp, P. E., and Albano, A. M., “Time domain measures of inter-channel EEG correlations: A comparison of linear, nonparametric and nonlinear measures,” Cogn. Neurodyn., 8, No. 1, 1-15 (2014).

    Article  Google Scholar 

  10. Da Silva, F. L., Pijn, J. P., and Boeijinga, P., “Interdependence of EEG signals: Linear vs. nonlinear associations and the significance of time delays and phase shifts,” Brain Topogr., 2, No. 1-2, 9-18 (1989).

    Article  Google Scholar 

  11. Kalitzin, S. N., Parra, J., Velis, D. N., and da Silva, F. L., “Quantification of unidirectional nonlinear associations between multidimensional signals,” IEEE Trans. Biomed. Eng., 54, No. 3, 454-461 (2007).

    Article  Google Scholar 

  12. Wendling, F., Ansari-Asl, K., Bartolomei, F., and Senhadji, L., “From EEG signals to brain connectivity: A model-based evaluation of interdependence measures,” J. Neurosci. Meth., 183, No. 1, 9-18 (2009).

    Article  Google Scholar 

  13. Ivanovskii, R. I. and Novozhilov, M. A., “Inter-channel connectivity analysis of electroencephalograms based on the correlation ratio” Matemat. Biol. Bioinformatika, 11, No. 2, 214-224 (2016).

    Article  Google Scholar 

  14. MAS. Exponenta.ru. http://mas.exponenta.ru/ (accessed April 25, 2017).

  15. Ivanovskii, R. I., Probability Theory and Mathematical Statistics. Basics, Applied Aspects, and Examples with Problems for Mathcad [in Russian], BKhV, St. Petersburg (2008).

    Google Scholar 

  16. Shelyakin, A. M., Preobrazhenskaya, I. G., and Bogdanov, O. V., Micropolarization Therapy in Pediatric Neurology [in Russian], Medkniga, Moscow (2008).

    Google Scholar 

  17. Triumfov, A. V., Topical Diagnosis of Diseases of the Nervous System [in Russian], MEDpress-inform, Moscow (2015).

    Google Scholar 

  18. Gusev, E. I., Konovalov, A. N., and Burd, G. S., Neurology and Neurosurgery. A Textbook [in Russian], Meditsina, Moscow (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Novozhilov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 52, No. 2, Mar.-Apr., 2018, pp. 52-55.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanovsky, R.I., Novozhilov, M.A. Multiple Inter-Channel EEG Relationships and Their Application. Biomed Eng 52, 142–146 (2018). https://doi.org/10.1007/s10527-018-9800-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-018-9800-5

Navigation