Biomedical Engineering

, Volume 51, Issue 6, pp 377–380 | Cite as

Chemiresistive Sensors for Thrombin Assay Based on Nanosize Carbon Nanotube Films on Flexible Supports

  • I. A. Komarov
  • E. N. Rubtsova
  • A. S. Lapashina
  • A. V. Golovin
  • I. I. Bobrinetskiy
Theory and Design

We present here results obtained during the developmental construction of a selective biological sensor based on carbon nanotubes chemically modified with specific aptamers. The sensory layer, consisting of a film of carbon nanotubes, on a flexible polymer substrate, provides high sensitivity for assay of the target proteins. The responses of the sensory structures to the target protein − thrombin and a reference protein, albumin − were studied. Selective estimation of thrombin after exposure of the sensor to albumin was demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tilmaciu, C.-M. and Morris, M. C., “Carbon nanotube biosensors,” Front. Chem., 3, Article No. 59 (2015).Google Scholar
  2. 2.
    Kumar, A. M., Jung, S., and Ji, T., “Protein biosensors based on polymer nanowires, carbon nanotubes and zinc oxide nanorods,” Sensors, 11, 5087-5111 (2011).CrossRefGoogle Scholar
  3. 3.
    Li, X., Zhao, C., and Liu, X., “A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection,” Microsyst. Nanoeng., 1. Article No. 15014 (2015).Google Scholar
  4. 4.
    Kim, Y. H., Kim, S. J., Kim, Y.-J., et al., “Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending,” ACS Nano., 9, No. 10, 10,453-10,460 (2015).CrossRefGoogle Scholar
  5. 5.
    Li, F., Yub, S., Thompson, L., and Yu, A., “Development of a novel nitrite electrochemical sensor by stepwise in situ formation of palladium and reduced graphene oxide nanocomposites,” RSC Adv., 5, 40,111-40,116 (2015).Google Scholar
  6. 6.
    Hutter, E. and Maysinger, D., “Gold-nanoparticle-based biosensors for detection of enzyme activity,” Trends Pharm. Sci., 34, 497-507 (2013).CrossRefGoogle Scholar
  7. 7.
    Byrne, B., Stack, E., Gilmartin, N., and O’Kennedy, R. J., “Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins,” Sensors, 9, 4407-4445 (2009).CrossRefGoogle Scholar
  8. 8.
    Sharma, S., Byrne, H., and O’Kennedy, R. J., “Antibodies and Antibody-derived analytical biosensors,” Essays Biochem., 60, 9-18 (2016).CrossRefGoogle Scholar
  9. 9.
    So, H.-M., Won, K., Kim, Y. H., et al., “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” J. Am. Chem. Soc., 127, 11,906-11,907 (2005).Google Scholar
  10. 10.
    Nigam, V. K. and Shukla, P., “Enzyme based biosensors for detection of environmental pollutants,” J. Microbiol. Biotechnol., 25, No. 11, 1773-1781 (2015).CrossRefGoogle Scholar
  11. 11.
    Epstein, J. R., Biran, I., and Walt, D. R., “Fluorescence-based nucleic acid detection and microarrays,” Anal. Chim. Acta, 469, 3-36 (2002).CrossRefGoogle Scholar
  12. 12.
    Zhou W., Huang, P.-J., Ding, J., and Liu, J., “Aptamer-based biosensors for biomedical diagnostics,” Analyst, 139, 2627-2640 (2014).CrossRefGoogle Scholar
  13. 13.
    Jarczewska, M., Gorski, L., and Malinowska, E., “Electrochemical aptamer-based biosensors as potential tools for clinical diagnostics,” Anal. Meth., 8, 3861-3877 (2016).CrossRefGoogle Scholar
  14. 14.
    Sobhi, D., Rao, T. P., Rao, K. S., et al., “A review of DNA functionalized/grafted carbon nanotubes and their characterization,” Sensors Actuat. B., 122, 672-682 (2007).CrossRefGoogle Scholar
  15. 15.
    Kim, S. N., Rusling, J. F., and Papadimitrakopoulos, F., “Carbon nanotubes for electronic and electrochemical detection of biomolecules,” Adv. Mater., 19 (20), 3214-3228 (2007).Google Scholar
  16. 16.
    Rohrbach, F., Karadeniz, H., Erdem, A., et al., “Label-free impedimetric aptasensor for lysozyme detection based on carbon nanotube-modified screen-printed electrodes,” Anal. Biochem., 421, 454-459 (2012).CrossRefGoogle Scholar
  17. 17.
    Wang, J. and Lin, Y., “Functionalized carbon nanotubes and nanofibers for biosensing applications,” Trends Analyt. Chem., 27, No. 7, 619-626 (2008).CrossRefGoogle Scholar
  18. 18.
    Samsonova, Yu. S., Priezzhev, A. V., Lugovtsov, A. E., et al., “A study of the interaction of albumin molecules with diamond nanoparticles in aqueous solutions by dynamic light scattering,” Kvant. Elektron., 42, No. 6, 484-488 (2012).CrossRefGoogle Scholar
  19. 19.
    Erickson, H. P., “Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy,” Biol. Proc. Online, 11, 32-51 (2009).CrossRefGoogle Scholar
  20. 20.
    Rinker, S., Ke, Y., Liu, Y., et al., “Self-assembled DNA nanostructures for distance dependent multivalent ligand-protein binding,” Nature Nanotechnol., 3, No. 7, 418-422 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. A. Komarov
    • 1
  • E. N. Rubtsova
    • 1
  • A. S. Lapashina
    • 2
  • A. V. Golovin
    • 2
  • I. I. Bobrinetskiy
    • 1
  1. 1.National Research University of Electronic Technology (MIET)MoscowRussia
  2. 2.Faculty of Bioengineering and BioinformaticsM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations