Skip to main content
Log in

Methods for Compensation of Coil Misalignment in Systems for Inductive Transcutaneous Power Transfer to Implanted Medical Devices

  • Published:
Biomedical Engineering Aims and scope

The problem of variation of the output characteristics (voltage, current, power) of inductive powering systems for implantable medical devices is considered. The variation is primarily caused by relative misalignment of transmitting and receiving coils. A classification of misalignments is proposed. Main approaches to coil misalignment compensation are: mechanical fixation of the coils; evaluation of the relative position of the coils for elimination of misalignment or further tuning of the transmitting part of the system; optimization of the coil geometry providing stability within the given misalignment range; tuning the working frequency of the transmitting part of the system. It is shown that the compensation method should be selected with due regard to the implantable device parameters (first of all, the coil implantation site and the power consumption of the device).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amar, A. B., Kouki, A. B., Cao, H. et al., “Power approaches for implantable medical devices sensors,” 15, No. 11, 28889-28914 (2015).

  2. Bocan, K. N. and Sejdic, E., “Adaptive transcutaneous power transfer to implantable devices: A state of the art review,” Sensors, 16, No. 3, E393 (2016).

  3. Wang, J., Smith, J., and Bonde, P., “Energy transmission and power sources for mechanical circulatory support devices to achieve total implantability,” Annals of Thoracic Surgery, 97, No. 4, 1467-1474 (2014).

  4. Yakovlev, A., Kim, S., and Poon, A., “Implantable biomedical devices: Wireless powering and communication,” IEEE Communications Magazine, 50, No. 4, 152-159 (2012).

  5. Li, X., Yang, Y., and Gao, Y., “Visual prosthesis wireless energy transfer system optimal modeling,” Biomed. Eng. Online, 13, No. 3 (2014).

  6. Danilov, A. A., Itkin, G. P., and Selishchev, S. V., “Progress in methods for transcutaneous wireless energy supply to implanted ventricular assist devices,” Biomed. Eng., 44, No. 4, 125-129 (2010).

    Article  Google Scholar 

  7. Lenaerts, B. and Puers, R., Omnidirectional Inductive Powering for Biomedical Implants, Springer, Netherlands (2009).

    Book  Google Scholar 

  8. Eldridge, P., Simpson, B. A., and Gilbart, J., “The role of rechargeable systems in neuromodulation,” European Neurological Review, 6, No. 3, 187-192 (2011).

  9. Clark, G., Cochlear Implants: Fundamentals and Applications, Springer (2003).

  10. Weiland, J. D. and Humayun, M. S., “Visual prosthesis,” Proc. IEEE, 96, No. 7, 1076-1084 (2008).

    Article  Google Scholar 

  11. Slaughter, M. S. and Myers, T. J., “Transcutaneous energy transmission for mechanical circulatory support systems: History, current status, and future prospects,” J. Card. Surg., 25, No. 4, 484-489 (2010).

    Article  Google Scholar 

  12. Schuder, J. C., “Powering an artificial heart: Birth of the inductively coupled-radio frequency system in 1960,” Artif. Org., 26, No. 11, 909-915 (2002).

    Article  Google Scholar 

  13. Danilov, A. A. and Mindubaev, E. A., “Influence of angular coil displacements on effectiveness of wireless transcutaneous inductive energy transmission,” Biomed. Eng., 49, No. 3, 171-173 (2015).

    Article  Google Scholar 

  14. Danilov, A., Mindubaev, E., and Selishchev, S., “Space-frequency approach to design of displacement tolerant transcutaneous energy transfer system,” Progress in Electromagnetics Research M, 44, 91-100 (2015).

    Article  Google Scholar 

  15. Okamoto, E., Yamamoto, Y., Akasaka, Y. et al., “A transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device,” Artif. Org., 33, No. 8, 622-626 (2009).

    Article  Google Scholar 

  16. Mehta, S. M., Pae, W. E. Jr., Rosenberg, G. et al., “The LionHeart LVD-2000: A completely implanted left ventricular assist device for chronic circulatory support,” Annals of Thoracic Surgery, 71, No. 3, S156-S161 (2001).

  17. Wilson, B. S. and Dorman, M. F., “Cochlear implants: Current designs and future possibilities,” Journal of Rehabilitation Research and Development, 45, No. 5, 695-730 (2008).

  18. Dormer, K. J., Richard, G. L., Hough, J. V., and Nordquist, R. E., “The use of rare-earth magnet couplers in cochlear implants,” Laryngoscope, 91, No. 11, 1812-1820 (1981).

  19. Carlson, M. L., Neff, B. A., Link, M. J., Lane, J. I. et al., “Magnetic resonance imaging with cochlear implant magnet in place: safety and imaging quality,” Otol. Neurotol., 36, No. 6, 965-971 (2015).

    Article  Google Scholar 

  20. Leung, K.-S. et al. (eds.) Practice of Intramedullary Locked Nails, Springer, Berlin (2006).

    Google Scholar 

  21. Friedmann, J., Groedl, F., and Kennel, R., “A novel universal control scheme for transcutaneous energy transfer (TET) applications,” IEEE Journal of Emerging and Selected Topics in Power Electronics, 3, No. 1, 296-305 (2015).

  22. Ozeki, T., Chinzei, T., Abe, Y., Saito, I. et al., “Functions for detecting malposition of transcutaneous energy transmission coils,” Am. Soc. Artif. Int. Org. J., 49, No. 4, 469-474 (2003).

    Google Scholar 

  23. Hu, L., Fu, Y., Ruan, X., Xie, H., and Fu, X., “Detecting malposition of coil couple for transcutaneous energy transmission,” Am. Soc. Artif. Int. Org. J., 62, No. 1, 56-62 (2016).

    Article  Google Scholar 

  24. Fu, Y., Hu, L., Ruan, X., and Fu, X., “A transcutaneous energy transmission system for artificial heart adapting to changing impedance,” Artif. Org., 39, No. 4, 378-387 (2015).

    Article  Google Scholar 

  25. Larsson, B., Elmqvist, H., Ryden, L., and Shueller, H., “Lessons from the first patient with an implanted pacemaker: 1958-2001,” Pacing and Clinical Electrophysiology, 26, No. 1, 114-124 (2003).

  26. Arzuaga, P., “Cardiac pacemakers: Past, present and future,” IEEE Instrumentation and Measurement Magazine, 17, No. 3, 21-27 (2014).

  27. Flack, F. C., James, E. D., and Schlapp, D. M., “Mutual inductance of air-cored coils: Effect on design of radio-frequency coupled implants,” Med. Biol. Eng., 9, 79-85 (1971).

    Article  Google Scholar 

  28. Fiandra, O., “The first pacemaker implant in America,” Pacing and Clinical Electrophysiology, 11, No. 8, 1234-1238 (1988).

  29. Pelletier, B., Spiliopoulos, S., Finocchiaro, T., Graef, F. et al., “System overview of the fully implantable destination therapy – ReinHeart-total artificial heart,” Eur. J. Cardio-Thoracic Surgery, 47, No. 1, 80-86 (2015).

    Article  Google Scholar 

  30. Zierhofer, C. M. and Hochmair, E. S., “Geometric approach for coupling enhancement of magnetically coupled coils,” IEEE Trans. Biomedical Engineering, 43, No. 7, 708-714 (1996).

    Article  Google Scholar 

  31. Jow, U.-M. and Ghovanloo, M., “Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission,” IEEE Trans. Biomedical Circuits and Systems, 1, No. 3, 193-202 (2007).

    Article  Google Scholar 

  32. Danilov, A. A., Mindubaev, E. A., and Selishchev, S. V., “Design and evaluation of an inductive powering unit for implantable medical devices using GPU computing,” Progress in Electromagnetics Research B, 69, 61-73 (2016).

    Article  Google Scholar 

  33. Galbraith, D. C., Soma, M., and White, R. L., “A wide-band efficient inductive transdermal power and data link with coupling insensitive gain,” IEEE Trans. Biomedical Engineering, 34, No. 4, 265-275 (1987).

    Article  Google Scholar 

  34. Kiani, M. and Ghovanloo, M., “An RFID-based closed-loop wireless power transmission system for biomedical applications,” IEEE Trans. Circuits and Systems II, Express Briefs, 57, No. 4, 260-264 (2010).

  35. Si, P., Hu, A. P., Malpas, S., and Budgett, D., “A frequency control method for regulating wireless power to implantable devices,” IEEE Trans. Biomedical Circuits and Systems, 2, No. 1, 22-29 (2008).

    Article  Google Scholar 

  36. Aldhaher, S., Chi-kwong Luk, P., and Whidborne, J. F., “Tuning class E inverters applied in inductive links using saturable reactors,” IEEE Trans. Power Electronics, 29, No. 6, 2969-2978 (2014).

    Article  Google Scholar 

  37. Waters, B. H., Sample, A. P., Bonde, P., and Smith, J. R., “Powering a ventricular assist device (VAD) with the free-range resonant electrical energy delivery (FREE-D) system,” Proc. IEEE, 100, No. 1, 138-149 (2012).

    Article  Google Scholar 

  38. Schormans, M., Valente, V., and Demosthenous, A., “Frequency splitting analysis and compensation method for inductive wireless powering of implantable biosensors,” Sensors, 16, No. 8, E1229 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Danilov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 51, No. 1, Jan.-Feb., 2017, pp. 41-44.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilov, A.A., Mindubaev, E.A. & Selishchev, S.V. Methods for Compensation of Coil Misalignment in Systems for Inductive Transcutaneous Power Transfer to Implanted Medical Devices. Biomed Eng 51, 56–60 (2017). https://doi.org/10.1007/s10527-017-9684-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-017-9684-9

Navigation