Skip to main content

Advertisement

Log in

Visual and Robotic Guidance Systems for Transcatheter Implantation of Heart Value Prostheses

  • Theory and Design
  • Published:
Biomedical Engineering Aims and scope

Transcatheter heart valve prosthesis implantation (TCHVPI) is a complex method whose results depend on each of the components of the biotechnological system, such that complications cannot always be avoided. New medical technologies, namely robot systems (RS) and visual guidance systems (VGS) have been developed to counter these problems and make the procedure less dependent on the human factor. This review discusses the main current and potential VGS and RS technologies; the role of their integration is discussed and the main requirements for next-generation TCHVPI RS are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ovcharenko, E. A., “Effects of design features on clinical results of transcatheter aortic valve bioprosthesis implantation,” Vestn. Khirurg. Grekova, 173, No. 5, 86-90 (2014).

    Google Scholar 

  2. Margolina, A. A., Gruzdev, K. A., Lepilin, M. G., et al., “Complications of transcatheter aortic valve prosthetization,” Kardiologiya, 56, No. 2, 35-39 (2016).

    Article  Google Scholar 

  3. Ovcharenko, E. A., Klyshnikov, K. Y., Nushtaev, D. V., et al., “Investigation of the tubular leaflet geometry of an aortic heart valve prosthesis by finite-element analysis,” Biophysics, 60, No. 5, 827-834 (2015).

    Article  Google Scholar 

  4. Ershov, Yu. A. and Shchukin, S. I., “Introduction to the analysis of biotechnological systems,” in: Theoretical Bases of Biotechnological Systems [in Russian], Bauman Moscow State Technical University Press, Moscow (2011).

  5. Ovcharenko, E. A., Klyshnikov, K. U., Vlad, A. R., et al., “Computer-aided design of the human aortic root,” Comp. Biol. Med., No. 54, 109-115 (2015).

  6. Ovcharenko, E. A., Klyshnikov, K. U., Vlad, A. R., et al., “Anatomical basis of three-dimensional models of the root of the human aorta,” Klin. Fiziol. Krovoobr., No. 2, 12-20 (2013).

  7. Toma, M., Jensen, M. O., Einstein, D. R., et al., “Fluid-structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure,” Ann. Biomed. Eng., 44, No. 4, 942-953 (2016).

    Article  Google Scholar 

  8. Lou, J., Obuchowski, N. A., Krishnaswamy, A., et al., “Manual, semiautomated, and fully automated measurement of the aortic annulus for planning of transcatheter aortic valve replacement (TAVR/TAVI): Analysis of interchangeability,” J. Cardiovasc. Comput. Tomogr., 9, No. 1, 42-49 (2015).

    Article  Google Scholar 

  9. Merk, D. R., Karar, M. E., Chalopin, C., et al., “Image-guided transapical aortic valve implantation: Sensorless tracking of stenotic valve landmarks in live fluoroscopic images,” Innovations (Phila.), 6, No. 4, 231-236 (2011).

    Article  Google Scholar 

  10. Nguyen, D. L., Garreau, M., Auffret, V., et al., “Intraoperative tracking of aortic valve plane,” Conf. Proc. IEEE Eng. Med. Biol. Soc., 4378-4381 (2013).

  11. Samin, M., Juthier, F., Van Belle, C., et al., “Automated 3D analysis of multislice computed tomography to define the line of perpendicularity of the aortic annulus and of the implanted valve: Benefit on planning transcatheter aortic valve replacement,” Catheter. Cardiovasc. Interv., 83, No. 1, 119-127 (2014).

    Article  Google Scholar 

  12. Xia, Y., Hussein, S., Singh V., et al., “Context region discovery for automatic motion compensation in fluoroscopy,” Int. J. Comput. Assist. Radiol. Surg., 11, No. 6, 977-985 (2016).

    Article  Google Scholar 

  13. Blumenstein, J. M., Van Linden, A., and Moellmann H., “DynaCT-Guided Anatomical Rotation of the SAPIEN XT Valve during Transapical Aortic Valve Implantation: Proof of Concept,” Thorac. Cardiovasc. Surg., 61, No. 5, 409-413 (2013).

    Google Scholar 

  14. Kliger, C., Jelnin, V., Sharma, S., et al., “CT angiography-fluoroscopy fusion imaging for percutaneous transapical access,” JACC Cardiovasc. Imaging, 7, No. 2, 169-177 (2014).

    Article  Google Scholar 

  15. Ovcharenko, E. A., Klyshnikov, K. U., Savrasov, G. V., et al., “Predicting the outcomes of transcatheter aortic valve prosthesis implantation based on the finite element analysis and microcomputer tomography data,” Sovrem. Tekhnol. Med., 8, No. 1, 82-92 (2015).

    Article  Google Scholar 

  16. Kadakia, M. B., Silvestry, F. E., and Herrmann, H. C., “Intracardiac Echocardiography-guided transcatheter aortic valve replacement,” Catheter. Cardiovasc. Interv., 85, No. 3, 497-501 (2015).

    Article  Google Scholar 

  17. Currie, M. E., McLeod, A. J., Moore, J. T., et al., “Augmented reality system for ultrasound guidance of transcatheter aortic valve implantation,” Innovations (Phila), 11, No. 1, 31-39 (2016).

    Article  Google Scholar 

  18. McLeod, A. J., Currie, M. E., Moore, J. T., et al., “Phantom study of an ultrasound guidance system for transcatheter aortic valve implantation,” Comput. Med. Imaging Graph, No. 50, 24-30 (2016).

  19. Saeedi, M., Thomas, A., and Shellock, F. G., “Evaluation of MRI issues at 3-Tesla for a transcatheter aortic valve replacement (TAVR) bioprosthesis,” Magn. Reson. Imaging, 33, No. 4, 497-501 (2015).

    Article  Google Scholar 

  20. Horvath, K. A., Mazilu, D., Kocaturk O., et al., “Transapical aortic valve replacement under real-time magnetic resonance imaging guidance: Experimental results with balloon-expandable and selfexpanding stents,” Eur. J. Cardiothorac. Surg., 39, No. 6, 822-828 (2011).

    Article  Google Scholar 

  21. McVeigh, E. R., Guttman, M. A., Lederman, R. J., et al., “Real-time interactive MRI guided cardiac surgery: Aortic valve replacement using a direct apical approach,” Magn. Reson. Med., 56, No. 5, 958-964 (2006).

    Article  Google Scholar 

  22. Schultz, C. J., Lauritsch, G., and Mieghem, N., “Rotational angiography with motion compensation: First-in-man use for the 3D evaluation of transcatheter valve prostheses,” EuroIntervention, 11, No. 4, 442-449 (2015).

    Article  Google Scholar 

  23. Negoro, M., Tanimoto, M., Arai F., et al., “An intelligent catheter system robotic controlled catheter system,” Interv. Neuroradiol., No. 7, 111-113 (2002).

  24. Savrasov, G. V., Belikov, N. V., and Khaidukova, I. V., “Robotization of catheter control in interventional radiology procedures,” Biomed. Radioelektronika, No. 7, 31-38 (2015).

  25. Savrasov, G. V., Belikov, N. V., and Khaidukova, I. V., “Medical robot technology in interventional radiology,” Biomed. Radioelektronika, No. 7, 39-47 (2015).

  26. Mahmud, E., Dominguez, A., and Bahadorani J., “First-in-human robotic percutaneous coronary intervention for unprotected left main stenosis,” Catheter. Cardiovasc. Interv., 11, No. 2, 12-18 (2016).

    Google Scholar 

  27. Smilowitz, N. R., Moses, J., Sosa F., et al., “Robotic-Enhanced PCI Compared to the Traditional Manual Approach,” J. Invasive Cardiol., 26, No. 7, 318-321 (2014).

    Google Scholar 

  28. Riga, C. V., Bicknell, C. D., and Rolls A., “Robot-assisted Fenestrated Endovascular Aneurysm Repair (FEVAR) Using the Magellan System,” J. Vasc. Interv. Radiol., No. 24, 191-196 (2013).

  29. Rippela, R. A., Rolls, A. E., Riga, C. V., et al., “The use of robotic endovascular catheters in the facilitation of transcatheter aortic valve implantation,” Eur. J. Cardiothorac. Surg., 45, No. 5, 836-841 (2014).

    Article  Google Scholar 

  30. Girardi, L. N., Krieger, K. H., Mack, C. A., et al., “No-clamp technique for valve repair or replacement in patients with a porcelain aorta,” Ann. Thorac. Surg., No. 80, 1688-1692 (2005).

  31. Reinsfelt, B., Westerlind, A., Ioanes D., et al., “Transcranial Doppler microembolic signals and serum marker evidence of brain injury during transcatheter aortic valve implantation,” Acta Anaesthesiol. Scand., No. 56, 240-247 (2012).

  32. Mazomenos, E. B., Chang, P. L., Rippel, R. A., et al., “Catheter manipulation analysis for objective performance and technical skills assessment in transcatheter aortic valve implantation,” Int. J. Comput. Assist. Radiol. Surg., 11, No. 6, 1121-1131 (2016).

    Article  Google Scholar 

  33. Chan, J. L., Mazilu, D., Miller, J. G., et al., “Robotic-assisted real-time MRI-guided TAVR: From system deployment to in vivo experiment in swine model,” Int. J. Comput. Assist. Radiol. Surg., 27, No. 1, 25-34 (2016).

    Google Scholar 

  34. Weisz, G., Metzger, D. C., Caputo, R. P., et al., “Safety and feasibility of robotic percutaneous coronary intervention: PRECISE Study,” J. Am. Coll. Cardiol., 61, No. 15, 1596-1600 (2013).

    Article  Google Scholar 

  35. Im, E., Kim, J. S., and Hong, M. K., “Intravascular ultrasound as an adjunct tool for angiographically intermediate lesions and complex coronary interventions: Patient selection and perspectives,” J. Vasc. Diagn., No. 3, 41-51 (2015).

  36. Park, S. J., Gazzola, M., Park, K. S., et al., “Phototactic guidance of a tissue-engineered soft-robotic ray,” Science, 353, No. 6295, 158-162 (2016).

    Article  Google Scholar 

  37. Webster, V. A., Chapin, K. J., Hawley, E. L., et al., “Aplysia californica as a novel source of material for biohybrid robots and organic machines,” in: Biomimetic and Biohybrid Systems, Vol. 9793, pp. 365-374 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. U. Klyshnikov.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 51, No. 1, Jan.-Feb., 2017, pp. 1-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovcharenko, E.A., Savrasov, G.V. & Klyshnikov, K.U. Visual and Robotic Guidance Systems for Transcatheter Implantation of Heart Value Prostheses. Biomed Eng 51, 1–5 (2017). https://doi.org/10.1007/s10527-017-9672-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-017-9672-0

Navigation