Biomedical Engineering

, Volume 48, Issue 6, pp 283–287 | Cite as

Cell Culture Study Systems with Local Electrophysiological Effect Based on Single-Walled Carbon Nanotubes

  • A. S. Seleznev
  • I. A. Suetina
  • V. A. Petukhov
  • L. I. Russu
  • A. Yu. Gerasimenko
  • M. V. Mezentseva
  • I. I. Bobrinetsky
Theory and Design

Design and operating principles of electrophysiological systems for study of the effects of the electric field on the cultured cells are discussed. Electrodes based on single-walled carbon nanotubes provide localization of electric field, which allows their use for study of individual cells in tasks of growth stimulation and creation of cell−electronics interfaces. Proliferative and electrochemical activity during culture of different cell lines on carbon nanotube electrodes was studied. Increase in electrochemical activity in the area of contact between carbon nanotubes and nerve cells was observed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Taketani and M. Baudry, Advances in Network Electrophysiology Using Multi-electrode Arrays, Vol. XVIII, Springer (2010).Google Scholar
  2. 2.
    D. R. Merrill, M. Bikson, and J. G. R. Jefferys, J. Neuros. Meth., 141, 171-198 (2005).CrossRefGoogle Scholar
  3. 3.
    I. V. Mukhina, V. B. Kazantsev, L. G. Khaspekov, Yu. N. Zakharov, M. V. Vedunova, E. V. Mitroshina, S. A. Korotchenko, and E. A. Koryagina, Sovrem. Tekhn. Med., 1, 8-15 (2009).Google Scholar
  4. 4.
    C. M. Voge and J. P. Stegemann, J. Neural Eng., 8, 011001 (2011).CrossRefGoogle Scholar
  5. 5.
    K. Wang, H. A. Fishman, H. Dai, and J. S. Harris, Nano Lett., 6, 2043- 2048 (2006).CrossRefGoogle Scholar
  6. 6.
    G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, Nat. Nanotech., 4, 126-133 (2009).CrossRefGoogle Scholar
  7. 7.
    A. V. Krestinin, N. A. Kiselev, A. V. Raevskii, and A. G. Ryabenko, Eurasian Chem. Tech. J., 5, 7-18 (2005).Google Scholar
  8. 8.
    V. M. Podgaetsky, S. V. Selishchev, I. I. Bobrinetskii, and V. K. Nevolin, Opt. Mem. Neur. Net., 17, 147-151 (2008).CrossRefGoogle Scholar
  9. 9.
    R. U. Khabriev, Manual on Experimental (Preclinical) Study of New Pharmacological Substances [in Russian], Meditsina, Moscow (2005).Google Scholar
  10. 10.
    I. I. Bobrinetsky, A. S. Seleznev, R. A. Morozov, O. A. Lopatina, R. Y. Podchernyaeva, and I. A. Suetina, J. Biomat. Nanobiotech., 3, 377-384 (2012).CrossRefGoogle Scholar
  11. 11.
    S. Hosoi and C. L. Slayman, J. Physiol., 367, 267-290 (1985).CrossRefGoogle Scholar
  12. 12.
    I. I. Bobrinetsky, V. K. Nevolin, A. V. Romashkin, and A. S. Seleznev, Nanotekhnika, 3, 63-68 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. S. Seleznev
    • 1
  • I. A. Suetina
    • 2
  • V. A. Petukhov
    • 3
  • L. I. Russu
    • 2
  • A. Yu. Gerasimenko
    • 3
  • M. V. Mezentseva
    • 2
  • I. I. Bobrinetsky
    • 3
  1. 1.Niobis Ltd.Zelenograd, MoscowRussia
  2. 2.Ivanovsky Institute of VirologyMoscowRussia
  3. 3.National Research University of Electronic Technology MIETZelenograd, MoscowRussia

Personalised recommendations