Skip to main content

Advertisement

Log in

Characterization of an Innovative Implantable Valve-less Pump for Bio or Drug Fluid Delivery − Theory and Experiment

  • Published:
Biomedical Engineering Aims and scope

This article describes the design and testing procedures for an innovative implantable pump for medical applications. In contrast to traditional drug delivery methods, this implantable pump delivers drugs or biofluids (blood, plasma, etc.) with better performance. The valve-less feature of the pump reduces the probability of damaged blood cells during pumping, which may be caused by shearing forces on the cell membrane. High accuracy of drug (or biofluid) administration in an implantable pump is beneficial when treating patients. In addition, the pump does not require an external power source since it relies entirely on the body’s own energy from the pulsating character of blood circulation. The theoretical model of the pump elements is built based on nozzle-diffuser elements. The experiment shows that the efficiency ratio decreases when there is an increase in diameter of the nozzle-diffuser element. The efficiency ratio is also affected by the angle and the length of the channel. The maximum flow rate for the designed pump is around 1 ml/min based on a frequency of 1.16 Hz in pulsatile flow regime. The total dimensions (nozzle-diffuser elements and pumping chambers) of our pump are 45 × 6 × 15 mm. However, it is important to note that the dimensions can vary (from micro to macro sizes) depending on the application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. M. White, Fluid Mechanics, Mc Grow Hill (1998).

  2. E. Stemme and G. Stemme, Sens. Actuators A: Phys., 39, 159–167 (1993).

    Article  Google Scholar 

  3. T. Gerlach, M. Schuenemann, and H. Wurmus, J. Micromech. Microeng., 5, 199–201 (1995).

    Article  Google Scholar 

  4. F. K. Forster, R. L. Bardell, M. A. Afromowitz, N. R. Sharma, and A. Blanchard, Proc. ASME Fluids Engineering Division, FED 234 (1995), pp. 39–44.

  5. M. Heschel, M. Müllenborn, and S. Bouwstra, J. Microelectromech. Syst., 6, No. 1 (1997), pp. 41–47.

    Article  Google Scholar 

  6. A. Olsson, P. Enoksson, G. Stemme, and E. Stemme, J. Microelectromech. Syst., 6, 161–166 (1997).

    Article  Google Scholar 

  7. H. Andersson, W.v.d. Wijingaat, P. Nilsson, P. Enoksson, and G. Stemme, Sens. Actuat. B, 72, 259–265 (2001).

    Article  Google Scholar 

  8. V. Singhal, J. Y. Murthy, and S. V. Garimella, Sens. Actuat. A, 113, 226–235 (2004).

    Article  Google Scholar 

  9. J. W. Judy, In: Conf. Measur. Sci. Tech., Anaheim, CA (2000).

  10. N. Maluf, D. A. Gee, K. E. Petersen, and T. A. Gregory, Kovacs Medical Applications of MEM (2000).

  11. J. G. Smits, Sens. Actuat., A21–A23 (1990).

  12. Q. Cui, C. Liu, and X. F. Zha, J. Intell. Mat. Syst. Struct., 19 (2008).

  13. C. Yamahata, F. Lacharme, and M. A. M. Gijs, Microel. Eng., No. 5, 132–137 (2005).

  14. R. Zengerle, J. Ulrich, S. Kluge, M. Richter, and A. Richter, Sens. Actuat. A, 50, 81–86 (1995).

    Article  Google Scholar 

  15. O. C. Jeong and S. S. Yang, Sens. Actuat. A, 83, 249–255 (2000).

    Article  Google Scholar 

  16. J. Kan, Z. Yang, T. Peng, G. Cheng, and B. Wu, Sens. Actuat. A, 121, 156–161 (2005).

    Article  Google Scholar 

  17. Ali Ostadfar and A. H. Rawicz, J. Med. Biol. Eng., in press (2012).

  18. Sangki Lee and Kwang J. Kim, Smart Mat. Struct., 15, 1103–1109 (2006).

  19. X. N. Jiang, Z. Y. Zhou, X. Y. Huang, Y. Li, and Y. Yang, Sens. Actuat. A, 70, 81–87 (1998).

    Article  Google Scholar 

  20. E. Ventsel and T. Krauthammer, Thin Plates and Shells Theory, Analysis, and Applications, Marcel Dekker (2001).

  21. D. J. Laser and J. G. Santiago, J. Micromech. Microeng., 14, R35–R64 (2004).

    Article  Google Scholar 

  22. V. K. Varadan, K. J. Vinoy, and S. Gopalakrishnan, Smart Material Systems and MEMS: Design and Development Methodologies, John Wiley and Sons (2006).

  23. Nguyen Nam-Trung and S. T. Wereley, Fundamentals and Applications of Microfluidics, Artech House (2006).

  24. I. J. Karassik, J. P. Messina, P. Cooper, and C. C. Heald, Pump Handbook, McGraw-Hill (2001).

  25. Operator’s Manual. COBE Century Perfusion Pump, COBE Cardiovascular, Inc.

  26. Edwards TruWave Disposable Pressure Transducer. Edwards Life Science.

  27. P. K. Bansal and G. Xie, J. Heat Mass Transfer, 25, 183–190 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ostadfar.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 47, No. 1, Jan.-Feb., 2013, pp. 42-46.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostadfar, A., Rawicz, A.H. Characterization of an Innovative Implantable Valve-less Pump for Bio or Drug Fluid Delivery − Theory and Experiment. Biomed Eng 47, 50–55 (2013). https://doi.org/10.1007/s10527-013-9333-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-013-9333-x

Keywords

Navigation