Skip to main content
Log in

Use of Neural Networks for Identification of Artifacts in Electroencephalographic Signals Decomposed Using Wavelet Packet Transform

  • Published:
Biomedical Engineering Aims and scope

An algorithm for automatic interference (artifact) detection is suggested. This algorithm detects interference (artifact) as a component of EEG signals. The algorithm is based on approximation of electrophysiological signal using neural network model decomposition using the wavelet packet transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Zhirmunskaya and V. S. Losev, Human Electroencephalogram Description and Classification System [in Russian], Meditisina, Moscow (1984).

    Google Scholar 

  2. L. R. Zenkov and M. A. Ronkin, Functional Diagnosis of Nervous Diseases [in Russian], Meditisina, Moscow (1981).

    Google Scholar 

  3. I. M. Abdullaev, Kh. Z. Samedova, and N. T. Abdullaev, Nauch. Tr. ATU, IV(15), No. 3, 5–8 (2005).

    Google Scholar 

  4. V. V. Geppener, M. Ya. Leitane, and D. A. Chernichenko, www.vmark.ru

  5. R. T. Al-Kasasbeh, M. S. Shamaseen, and D. E. Skopin, Med. Tekh., No. 6, 19–26 (2008).

  6. J. Bendat and A. Piersol, RandomData: Analysis and Measurement Procedures [Russian translation], Mir, Moscow (1989).

    Google Scholar 

  7. R. M. Cronover, Fractals and Chaos in Dynamic Systems [Russian translation], Postmarket, Moscow (2000).

    Google Scholar 

  8. H. H. Hardy and A. Beier Richard, Fractals in Reservoir Engineering, World Scientific, Singapore (1994).

    Google Scholar 

  9. Yu. P. Virchenko and O. L. Shpilinskaya, Ukr. Mat. Zh., 50, No. 11, 1467–1483 (2004).

    MathSciNet  Google Scholar 

  10. Yu. P. Virchenko and O. L. Shpilinskaya, Teor. Matfiz., 124, No. 3, 490–505 (2000).

    MathSciNet  Google Scholar 

  11. Yu. P. Virchenko and O. L. Shpilinskaya, Teor. Matfiz., 128, No. 2, 179–192 (2001).

    MathSciNet  Google Scholar 

  12. N. F. Babkin and V. V. Kotin, Biomed. Tekhnol. Radioelektr., No. 10, 37–41 (2006).

  13. I. I. Kosilina, Biomed. Tekhnol. Radioelektr., No. 11, 69–72 (2006).

  14. R. R. Coifman, Y. Meyer, and V. Wickerhauser, Wavelet Analysis and Their Applications, Jones and Barlett, Boston (1992), pp. 153–178.

    Google Scholar 

  15. S. Mallat, Trans. Pattern Anal. Machine Intell., 11, 674–693 (1989).

    Article  MATH  Google Scholar 

  16. S. Osowsky, Neural Networks for Information Processing [Russian translation], Finansy i Statistika, Moscow (2002).

    Google Scholar 

  17. L. V. Novikov, Nauch. Priborostr., 10, No. 3, 70–77 (2002).

    Google Scholar 

  18. M. Martinets, S. Berkovich, and K. Schulten, Trans. Neural Networks, 4, 558–569 (1993).

    Article  Google Scholar 

  19. H. Ritter and K. Schulten, Biol. Cyber., 54, 234–249 (1986).

    Article  Google Scholar 

  20. R. Kassasbeh, M. Alshamasin, D. E. Skopin, O. Barbarawi, and V. V. Geppener, Med. Tekh., No. 1, 27–31 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Abdullaev.

Additional information

Translated from Meditsinskaya Tekhnika, Vol. 43, No. 4, 2009, pp. 42–46.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdullaev, N.T., Dyshin, O.A. & Samedova, K.Z. Use of Neural Networks for Identification of Artifacts in Electroencephalographic Signals Decomposed Using Wavelet Packet Transform. Biomed Eng 43, 191–194 (2009). https://doi.org/10.1007/s10527-009-9114-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10527-009-9114-8

Keywords

Navigation