Skip to main content

The effect of mixtures of Bacillus thuringiensis-based insecticide and multiple nucleopolyhedrovirus of Lymantria dispar L. in combination with an optical brightener on L. dispar larvae

Abstract

This study evaluated the efficacy of the commercially available insecticide Lepidocide based on Bacillus thuringiensis var. kurstaki and Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) and their combination with an optical brightener to control L. dispar L. Efficacy against both second and fourth instar L. dispar larvae was evaluated, and the type of interaction between the tested components was determined using second instar L. dispar larvae. Most combinations of Lepidocide and LdMNPV containing a 5 mg ml−1 optical brightener had synergistic effects, and their mixtures were most effective in reducing the number of second instar larvae. In contrast, mixtures containing Lepidocide and LdMNPV with an optical brightener caused significantly lower mortality of fourth instar L. dispar larvae than mixtures without Lepidocide. This result suggests that an increased concentration of Lepidocide in a mixture containing LdMNPV and an optical brightener leads to an antagonistic effect on insect mortality. The possible reasons for the differences in the observed effects of the components on the second and fourth instar L. dispar larvae may be associated with the resistance of fourth-instar larvae to the antifeedant effect of B. thuringiensis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Akhanaev YB, Tomilova OG, Yaroslavtseva ON, Duisembekov BA, Kryukov VY, Glupov VV (2017a) Combined action of the entomopathogenic fungus Metarhizium robertsii and avermectins on the larvae of the colorado potato beetle Leptinotarsa decemlineata (Say) (Coleoptera, Chrysomelidae). Entomol Rev 97(2):158–165

    Article  Google Scholar 

  • Akhanaev YB, Belousova IA, Ershov NI, Nakai M, Martemaynov VV, Glupov VV (2017b) Comparison of tolerance to sunlight between spatially distant and genetically different strains of Lymantria dispar nucleopolyhedrovirus. PLoS ONE 12(12):e0189992

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Akhanaev YB, Belousova IA, Lebedeva DA, Pavlushin SV, Martemaynov VV (2020) A comparison of the vertical transmission of high- and low-virulence nucleopolyhedrovirus strains in Lymantria dispar L. Insects 11(7):455

    PubMed Central  Article  Google Scholar 

  • Argauer R, Shapiro M (1997) Fluorescence and relative activities of stilbene optical brighteners as enhancers for the gypsy moth (Lepidoptera: Lymantriidae) baculovirus. J Econ Entomol 90(2):416–420

    CAS  Article  Google Scholar 

  • Behle R, Birthisel T (2013) Formulations of entomopathogens as bioinsecticides. In: Morales-Ramos JA, Guadalupe RM, Shapiro-Ilan DA (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Acad Press, Amsterdam, pp 483–517

    Google Scholar 

  • Bell MR, Romine CL (1986) Heliothis virescens and H. zea (Lepidoptera: Noctuidae): dosage effects of feeding mixtures of Bacillus thuringiensis and a nuclear polyhedrosis virus on mortality and growth. Environ Entomol 15:1161–1165

    Article  Google Scholar 

  • Belousova IA, Martemyanov VV, Glupov VV (2017) The role of rapid induced resistance of host plant in trophic interactions between Betula pendula, Lymantria dispar and Bacillus thuringiensis. Russ J Ecol 48:116–121

    Article  Google Scholar 

  • Bernal A, Simón O, Williams T, Caballero P (2014) Stage-specific insecticidal characteristics of a nucleopolyhedrovirus isolate from Chrysodeixis chalcites enhanced by optical brighteners. Pest Manag Sci 70:798–804

    CAS  PubMed  Article  Google Scholar 

  • Bradshaw CJA, Leroy B, Bellard C, Roiz D, Albert C, Fournier A, Barbet-Massin M, Salles JM, Simard F, Courchamp F (2016) Massive yet grossly underestimated global costs of invasive insects. Nat Commun 7:12986

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Campbell R, Sloan R (1977) Forest stand responses to defoliation by the gypsy moth. For Sci 23(suppl_2):a0001-z0001

    Google Scholar 

  • Chagnon M, Kreutzweiser D, Mitchell EAD, Morrissey CA, Noome DA, van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22:119–134

    CAS  Article  Google Scholar 

  • Cory JS (2015) Insect virus transmission: different routes to persistence. Curr Opin Insect Sci 8:130–135

    PubMed  Article  Google Scholar 

  • Dáder B, Aguirre E, Caballero P, Medina P (2020) Synergy of lepidopteran nucleopolyhedroviruses AcMNPV and SpliNPV with insecticides. Insects 11(5):316

    PubMed Central  Article  Google Scholar 

  • Denecke S, Swevers L, Douris V, Vontas J (2018) How do oral insecticidal compounds cross the insect midgut epithelium? Insect Biochem Mol Biol 103:22–35

    CAS  PubMed  Article  Google Scholar 

  • Dougherty EM, Guthrie KP, Shapiro M (1996) Optical brighteners provide baculovirus activity enhancement and UV radiation protection. Biol Control 7(1):71–74

    Article  Google Scholar 

  • Dougherty EM, Narang N, Loeb M, Lynn DE, Shapiro M (2006) Fluorescent brightener inhibits apoptosis in baculovirus-infected gypsy moth larval midgut cells in vitro. Biocontrol Sci Technol 16:157–168

    Article  Google Scholar 

  • Elkinton JS (2009) Gypsy moth. In: Resh VH, Cardé RT (eds) Encyclopedia of insects, 2nd edn. Acad Press, San Diego, pp 435–439

    Chapter  Google Scholar 

  • Furlong MJ, Groden E (2001) Evaluation of synergistic interactions between the Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid, and cyromazine. J Econ Entomol 94(2):344–356

    CAS  PubMed  Article  Google Scholar 

  • Fuxa JR, Sun JZ, Weidner EH, Lamotte LR (1999) Stressors and rearing diseases of Trichoplusia ni: evidence of vertical transmission of NPV and CPV. J Invertebr Pathol 74:149–155

    CAS  PubMed  Article  Google Scholar 

  • Guido-Cira ND, Tamez-Guerra P, Mireles-Martínez M, Villegas-Mendoza JM, Rosas-García NM (2017) Activity of Bacillus thuringiensis and baculovirus-based formulations to Spodoptera species. Southwest Entomol 42:191–201

    Article  Google Scholar 

  • Hajek AE, van Frankenhuyzen K (2017) Use of entomopathogens against forest pests In: Lacey LA (ed) Microbial control of insect and mite pests. Elsevier Inc, pp 313–330

  • Hatem AE, Amer RAM, Vargas-Osuna E (2012) Combination effects of Bacillus thuringiensis cry1Ac toxin and nucleopolyhedrovirus or granulovirus of Spodoptera littoralis on the cotton leafworm. Egypt J Biol Pest Control 22:115–120

    Google Scholar 

  • Heckel DG (2020) How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Arch Insect Biochem Physiol 104:e21673

    CAS  PubMed  Article  Google Scholar 

  • Hesketh H, Hails RS (2015) Bacillus thuringiensis impacts on primary and secondary baculovirus transmission dynamics in Lepidoptera. J Invertebr Pathol 132:171–181

    CAS  PubMed  Article  Google Scholar 

  • Hughes PR, van Beek NAM, Wood HA (1986) A modified droplet feeding method for rapid assay of Bacillus thuringiensis and baculoviruses in noctuid larvae. J Invertebr Pathol 48:187–192

    Article  Google Scholar 

  • Ignoffo CM (1992) Environmental factors affecting persistence of entomopathogens. Florida Entomol 75(4):516–525

    Article  Google Scholar 

  • Ignoffo CM, Garcia C (1992) Combinations of environmental factors and simulated sunlight affecting activity of inclusion bodies of the Heliothis (Lepidoptera: Noctuidae) nucleopolyhedrosis virus. Environ Entomol 21(1):210–213

    Article  Google Scholar 

  • Konecka E, Kaznowski A, Grzesiek W, Nowicki P, Czarniewska E, Baranek J (2020) Synergistic interaction between carvacrol and Bacillus thuringiensis crystalline proteins against Cydia pomonella and Spodoptera exigua. BioControl 65:447–460

    CAS  Article  Google Scholar 

  • Kryukov VY, Khodyrev VP, Yaroslavtseva ON, Kamenova AS, Duisembekov BA, Glupov VV (2009) Synergistic action of entomopathogenic hyphomycetes and the bacteria Bacillus thuringiensis ssp. morrisoni in the infection of Colorado potato beetle Leptinotarsa decemlineata. Appl Biochem Microbiol 45:511–516

    CAS  Article  Google Scholar 

  • Kryukov VY, Tomilova OG, Luzina OA, Yaroslavtseva ON, Akhanaev YB, Tyurin MV, Duisembekov BA, Salakhutdinov NF, Glupov VV (2018) Effects of fluorine-containing usnic acid and fungus Beauveria bassiana on the survival and immune–physiological reactions of Colorado potato beetle larvae. Pest Manag Sci 74:598–606

    CAS  PubMed  Article  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    CAS  PubMed  Article  Google Scholar 

  • Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB (2018) Virus taxonomy: the database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res 46:708–717

    Article  CAS  Google Scholar 

  • Liebhold AM, Gottschalk KW, Muzikam R-M, Montgomery ME, Young R, O’Day K, Kelley B (1995) Suitability of North American tree species to the gypsy moth: a summary of field and laboratory tests. General technical report NE-211 https://www.fs.usda.gov/treesearch/pubs/4327. Accessed 15 Dec 2021

  • Liu X, Zhang Q, Xu B, Li J (2006) Effects of Cry1Ac toxin of Bacillus thuringiensis and nuclear polyhedrosis virus of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on larval mortality and pupation. Pest Manag Sci 62:729–737

    CAS  PubMed  Article  Google Scholar 

  • Magholli Z, Marzban R, Abbasipour H, Shikhi A, Karimi J (2013) Interaction effects of Bacillus thuringiensis subsp. kurstaki and single nuclear polyhedrosis virus on Plutella xylostella. J Plant Dis Prot 120:173–178

    Article  Google Scholar 

  • Martemyanov VV, Bykov RA, Demenkova M, Gninenko Y, Romancev S, Bolonin I, Mazunin I, Belousova IA, Akhanaev YB, Pavlushin SV, Krasnoperova P, Ilinsky Y (2019) Genetic evidence of broad spreading of Lymantria dispar in the West Siberian Plain. PLoS ONE 14(8):e0220954

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Martin PAW (2004) A stilbene optical brightener can enhance bacterial pathogenicity to gypsy moth (Lepidoptera: Lymantriidae) and Colorado potato beetle (Coleoptera: Chrysomelidae). Biocontrol Sci Technol 14:375–383

    Article  Google Scholar 

  • Martínez AM, Simón O, Williams T, Caballero P (2003) Effect of optical brighteners on the insecticidal activity of a nucleopolyhedrovirus in three instars of Spodoptera frugiperda. Entomol Exp Appl 109:139–146

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    Book  Google Scholar 

  • Mcmanus M, Csóka G (2007) History and impact of gypsy moth in North America and comparison to recent outbreaks in Europe. Acta Silvatica Lignaria Hung 3:47–64

    Google Scholar 

  • Murillo R, Lasa R, Goulson D, Williams T, Muñoz D, Caballero P (2003) Effect of Tinopal LPW on the insecticidal properties and genetic stability of the nucleopolyhedrovirus of Spodoptera exigua (Lepidoptera: Noctuidae). J Econ Entomol 96(6):1668–1674

    CAS  PubMed  Article  Google Scholar 

  • Mustalis RA (2000) Optical brightener: history and technology. Stud Conserv 45(1):133–136

    Article  Google Scholar 

  • Myers JH, Boettner G, Elkinton J (1998) Maternal effects in gypsy moth: only sex ratio varies with population density. Ecology 79:305–314

    Article  Google Scholar 

  • Okuno S, Takatsuka J, Nakai M, Ototake S, Masui A, Kunimi Y (2003) Viral-enhancing activity of various stilbene-derived brighteners for a Spodoptera litura (Lepidoptera: Noctuidae) nucleopolyhedrovirus. Biol Control 26:146–152

    Article  Google Scholar 

  • Otieno JA, Pallmann P, Poehling HM (2017) Additive and synergistic interactions amongst Orius laevigatus (Heteroptera: Anthocoridae), entomopathogens and azadirachtin for controlling western flower thrips (Thysanoptera: Thripidae). BioControl 62:85–95

    CAS  Article  Google Scholar 

  • Pavlushin SV, Belousova IA, Chertkova EA, Akhanaev YB, Martemyanov VV, Glupov VV (2020) Effect of starvation as a population stress-factor on activation of covert baculovirus infection in gypsy moth. Biol Bull Rev 11:86–91

    Article  Google Scholar 

  • Peterson B, Bezuidenhout CC, van den Berg J (2017) An overview of mechanisms of Cry toxin resistance in lepidopteran insects. J Econ Entomol 110(2):362–377

    CAS  PubMed  Article  Google Scholar 

  • Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Mcfield M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, van der Sluijs JP, van Dyck H, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22:68–102

    CAS  Article  Google Scholar 

  • Pisa L, Goulson D, Yang EC, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJK, Giorio C, Long EY, McField M, van Lexmond MB, Bonmatin JM (2017) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environ Sci Pollut Res 28:11749–11797

    Article  CAS  Google Scholar 

  • Pogue M, Schaefer PW (2007) A review of selected species of Lymantria (Hubner [1819]) (Lepidoptera: Noctuidae: Lymantriinae) from subtropical and temperate regions of Asia including the description of three new species, some potentially invasive to North America. Forest service, Forest health technology enterprise team https://naldc.nal.usda.gov/catalog/45484. Accessed 17 Dec 2021

  • R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/. Accessed on 17 Dec 2021

  • Raymond B, Sayyed AH, Wright DJ (2006) The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: Co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. J Invertebr Pathol 93:114–120

    CAS  PubMed  Article  Google Scholar 

  • Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS ONE 10(12):e0146021

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Shapiro M (1995) Radiation protection and activity enhancement of viruses In: Hall FR, Barry JW (eds) Biorational pest control agents: formulation and delivery. Am Chem Soc Symp, pp 153–164

  • Shapiro M, Robertson JL (1992) Enhancement of gypsy moth (Lepidoptera: Lymantriidae) baculovirus activity by optical brighteners. J Econ Entomol 85:1120–1124

    CAS  Article  Google Scholar 

  • Sheppard CA, Shapiro M (1994) Physiological and nutritional effects of a fluorescent brightener on nuclear polyhedrosis virus-infected Lymantria dispar (L.) larvae (lepidoptera: Lymantriidae). Biol Control 4(4):404–411

    Article  Google Scholar 

  • Slack J, Arif BM (2006) The baculoviruses occlusion-derived virus: virion structure and function. Adv Virus Res 69:99–165

    Article  CAS  Google Scholar 

  • Tabashnik BE, Fabrick JA, Unnithan GC, Yelich AJ, Masson L, Jie Z, Bravo A, Soberón M (2013) Efficacy of genetically modified Bt toxins alone and in combinations against pink bollworm resistant to Cry1Ac and Cry2Ab. PLoS ONE 8(11):e80496

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tammes PML (1964) Isoboles, a graphic representation of synergism in pesticides. J Plant Pathol 70:73–80

    CAS  Google Scholar 

  • Twery MJ (1990) Effects of defoliation by gypsy moth. In: Gottschalk KW, Twery MJ, Smith SI (eds) Proceedings US department of agriculture interagency gypsy moth research review, Forest service, Northeastern forest experiment station, pp 27–39

  • van Frankenhuyzen K, Reardon RC, Dubois NR (2007) Forest defoliators. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 481–504

    Chapter  Google Scholar 

  • Wang P, Granados RR (2000) Calcofluor disrupts the midgut defense system in insects. Insect Biochem Mol Biol 30:135–143

    CAS  PubMed  Article  Google Scholar 

  • Washburn JO, Kirkpatrick BA, Haas-Stapleton E, Volkman LE (1998) Evidence that the stilbene-derived optical brightener M2R enhances Autographa californica M nucleopolyhedrovirus infection of Trichoplusia ni and Heliothis virescens by preventing sloughing of infected midgut epithelial cells. Biol Control 11(1):58–69

    Article  Google Scholar 

  • Williams T, Virto C, Murillo R, Caballero P (2017) Covert infection of insects by baculoviruses. Front Microbiol 8:1337

    PubMed  PubMed Central  Article  Google Scholar 

  • Yaroslavtseva ON, Dubovskiy IM, Khodyrev VP, Duisembekov BA, Kryukov VY, Glupov VV (2017) Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae. J Insect Physiol 96:14–20

    CAS  PubMed  Article  Google Scholar 

  • Zhu R, Liu K, Peng J, Yang H, Hong H (2007) Optical brightener M2R destroys the peritrophic membrane of Spodoptera exigua (Lepidoptera: Noctuidae) larvae. Pest Manag Sci 63:296–300

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the director of the Karasuk Research Station, Vladimir Shilo for his help in the organization of the experiments. Thanks to Vladislav Suchovolsky (Sukachev Institute of Forest SB RAS) for consulting in statistical analysis. We also thank the anonymous reviewers for their help in improving the manuscript.

Funding

This research was carried out within the Federal Fundamental Scientific Research Programme for 2021–2025 (# 0247-2021-0003) and the Ministry of Higher Education and Research of Russian Federation (# FZZE-2020-0026). This work was supported by Russian Foundation for Basic Research and the government of the Novosibirsk region according to the research project # 19-416-543005 and # 19-416-540005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Akhanaev.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflict of interest.

Research involving human and/or animal rights

This article does not contain any studies with human participants or animals (vertebrates) performed by any of the authors.

Additional information

Handling Editor: Nicolai Meyling.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 113 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akhanaev, Y., Pavlushin, S., Polenogova, O. et al. The effect of mixtures of Bacillus thuringiensis-based insecticide and multiple nucleopolyhedrovirus of Lymantria dispar L. in combination with an optical brightener on L. dispar larvae. BioControl 67, 331–343 (2022). https://doi.org/10.1007/s10526-022-10137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-022-10137-7

Keywords

  • Lymantria dispar
  • Bacillus thuringiensis
  • Gypsy moth
  • Lepidocide
  • LdMNPV
  • Baculovirus
  • Synergy
  • Antagonism
  • Optical brightener
  • Combination