Skip to main content

Long-term effects of cattail Typha latifolia pollen on development, reproduction, and predation capacity of Neoseiulus cucumeris, a predator of Tetranychus urticae

Abstract

The effects of cattail Typha latifolia L. pollen on development and reproduction of Neoseiulus cucumeris (Oudemans) was determined over 25 consecutive generations (G). The ability of N. cucumeris to locate, capture, and consume natural prey Tetranychus urticae (Koch) was assessed after the 10th generation (G10-switch) and the 20th generation (G20-switch). Results indicated that T. latifolia pollen had no effect on N. cucumeris development time between G1 and G25. N. cucumeris fecundity was significantly greater in the older than younger generations. Life table analysis revealed that net reproductive rate (R0) was significantly higher for N. cucumeris fed T. latifolia at G10. Feeding on T. latifolia from G1-G5 resulted in lower intrinsic (r) and finite (λ) rates of increase. Feeding at G10 resulted in higher population growth rates. When switched to a diet of T. urticae, N. cucumeris immature development and fecundity were not significantly affected by generation. However, the values of r, gross reproductive rate (GRR), and λ were higher at the G20-switch than the G10-switch. Our results demonstrate that a diet of T. latifolia pollen supports N. cucumeris development and reproduction for 25 consecutive generations without reducing predation capacity. T. latifolia pollen is a suitable diet for long-term rearing of N. cucumeris for augmentative biological control of tetranychid mites.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Al-Shemmary KA (2018) The availability of rearing Neoseiulus cucumeris (Oud.) and Neoseiulus barkeri (Hughes) (Acari: Phytoseiidae) on three insect egg species. Egypt J Biol Pest Control 28:79

    Article  Google Scholar 

  2. Bahari F, Fathipour Y, Talebi AA, Alipour Z (2018) Long-term feeding on greenhouse cucumber affects life table parameters of two-spotted spider mite and its predator Phytoseiulus persimilis. Syst Appl Acarol 23:2304–2316

    Google Scholar 

  3. Broufas GD, Koveos DS (2000) Effect of different pollens on development, survivorship and reproduction of Euseius finlandicus (Acari: Phytoseiidae). Environ Entomol 29:743–749

    Article  Google Scholar 

  4. Chen Q, Li N, Wang X, Ma L, Huang J-B, Huang G-H (2017) Age stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. PLoS ONE 12(3):e0173380

    Article  Google Scholar 

  5. Chi H (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environ Entomol 17:26–34

    Article  Google Scholar 

  6. Chi H (2019a) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Taichung, Taiwan: National Chung Hsing University; http://140.120.197.173/Ecology/prod02.htm

  7. Chi H (2019b) CONSUME-MSChart: a computer program for the age-stage, two-sex consumption rate analysis. Taichung, Taiwan: National Chung Hsing University; http://140.120.197.173/Ecology/prod02.htm

  8. Chi H, Liu H (1985) Two new methods for the study of insect population ecology. Bull Inst Zool Acad Sin 24:225–240

    Google Scholar 

  9. Chi H, Yang TC (2003) Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environ Entomol 32:327–333

    Article  Google Scholar 

  10. Fathipour Y, Maleknia B (2016) Mite predators. In: Omkar (ed) Ecofriendly pest management for food security. Elsevier, San Diego, pp 329–366

    Chapter  Google Scholar 

  11. Goleva I, Zebitz CPW (2013) Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae). Exp Appl Acarol 61:259–283

    CAS  Article  Google Scholar 

  12. Grenier S, De Clercq P (2003) Comparison of artificially vs. naturally reared natural enemies and their potential for use in biological control. In: van Lenteren J (ed) Quality control and production of biological control agents. Theory and testing procedures. CABI Publishing, Wallingford, pp 115–131

    Chapter  Google Scholar 

  13. Huang YB, Chi H (2012) Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age specific life tables to insect populations. Insect Sci 19:263–273

    Article  Google Scholar 

  14. Khanamani M, Fathipour Y, Talebi AA, Mehrabadi M (2017a) Linking pollen quality and performance of Neoseiulus californicus (Acari: Phytoseiidae) in two-spotted spider mite management programmes. Pest Manag Sci 73:452–461

    CAS  Article  Google Scholar 

  15. Khanamani M, Fathipour Y, Talebi AA, Mehrabadi M (2017b) Quantitative analysis of long-term mass rearing of Neoseiulus californicus (Acari: Phytoseiidae) on almond pollen. J Econ Entomol 110:1442–1450

    Article  Google Scholar 

  16. Leppla NC, Rojas MG, Morales-Ramos JA, Shapiro-Ilan DI (2014) Introduction. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms: invertebrates and entomopathogens, 1st edn. Academic Press, Waltham, Massachusetts, pp 3–16

    Chapter  Google Scholar 

  17. Lundgren JG (2009) Relationships of natural enemies and non-prey foods. Springer, Dordrecht

    Book  Google Scholar 

  18. McMurtry JA, Rodriguez JG (1987) Nutritional ecology of phytoseiid mites. In: Slansky F, Rodriguez JG (eds) Nutritional ecology of insects, mites, spiders and related invertebrates. Wiley, New York, pp 609–644

    Google Scholar 

  19. McMurtry JA, De Moraes GJ, Sourassou NF (2013) Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst Appl Acarol 18:297–320

    Google Scholar 

  20. Nemati A, Riahi E (2020) Does feeding on pollen grains affect the performance of Amblyseius swirskii (Acari: Phytoseiidae) during subsequent generations? Bull Entomol Res 110:449–456

    Article  Google Scholar 

  21. Nguyen DT, Vangansbeke D, De Clercq P (2014) Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Exp Appl Acarol 62:181–194

    CAS  Article  Google Scholar 

  22. Nguyen DT, Vangansbeke D, De Clercq P (2015) Performance of four species of phytoseiid mites on artificial and natural diets. Biol Control 80:56–62

    Article  Google Scholar 

  23. Noble WS (2009) How does multiple testing correction work? Nat Biotechnol 27:1135–1137

    CAS  Article  Google Scholar 

  24. Ranabhat NB, Goleva I, Zebitz CP (2014) Life tables of Neoseiulus cucumeris exclusively fed with seven different pollens. BioControl 59:195–203

    Article  Google Scholar 

  25. Riahi E, Fathipour Y, Talebi AA, Mehrabadi M (2016) Pollen quality and predator viability: life table of Typhlodromus bagdasarjani on seven different plant pollens and two-spotted spider mite. Syst Appl Acarol 21:1399–1412

    Google Scholar 

  26. Riahi E, Fathipour Y, Talebi AA, Mehrabadi M (2017) Linking life table and consumption rate of Amblyseius swirskii (Acari: Phytoseiidae) in presence and absence of different pollens. Ann Entomol Soc Am 110:244–253

    Google Scholar 

  27. Riddick EW, Chen H (2014) Production of coleopteran predators. In: Morales-Ramos JA, Rojas MG, Shapiro DE (eds) Mass production of beneficial organisms: invertebrates and entomopathogens. Elsevier Inc, London, pp 17–55

    Chapter  Google Scholar 

  28. Samaras K, Pappas ML, Fytas E, Broufas GD (2015) Pollen suitability for the development and reproduction of Amblydromalus limonicus (Acari: Phytoseiidae). BioControl 60:773–782

    CAS  Article  Google Scholar 

  29. Sarwar M (2019). Biology and ecology of some predaceous and herbivorous mites important from the agricultural perception. In: Haouas D, Hufnagel L (eds) Pest control and acarology. Dalila Haouas and Levente Hufnagel, IntechOpen, pp 1–29, available from: https://www.intechopen.com/chapters/67380

  30. van Lenteren JC (2006) How not to evaluate augmentative biological control. Biol Control 39:115–118

    Article  Google Scholar 

  31. van Lenteren JC (2012) The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. Biol Control 57:1–20

    Google Scholar 

  32. van Driesche RG, Bellows TS Jr (1996) Biological control. Chapman & Hall, New York

    Book  Google Scholar 

  33. van Driesche RG, Heinz KM, van Lenteren JC, Loomans A, Wick R, Smith T, Lopes P, Sanderson J, Daughtrey PM, Brownbridge M (1998) Western flower thrips in greenhouses: a review of its biological control and other methods. U Mass Extension, Floral Facts, University of Massachusetts, Amherst

    Google Scholar 

  34. van Rijn PCJ, Tanigoshi LK (1999) Pollen as food for the predatory mites Iphiseius degenerans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Exp Appl Acarol 23:785–802

    Article  Google Scholar 

  35. van Rijn PC, van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83:2664–2679

    Article  Google Scholar 

  36. Vangansbeke D, Nguyen DT, Audenaert J, Verhoeven R, Deforce K, Gobin B, Tirry L, De Clercq P (2014) Diet-dependent cannibalism in the omnivorous phytoseiid mite Amblydromalus limonicus. Biol Control 74:30–35

    Article  Google Scholar 

  37. Yazdanpanah S, Fathipour Y, Riahi E (2021a) Pollen grains are suitable alternative food for rearing the commercially used predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae). Syst Appl Acarol 26:1009–1020

    Google Scholar 

  38. Yazdanpanah S, Fathipour Y, Riahi E, Zalucki MP (2021b) Mass production of Neoseiulus cucumeris (Acari: Phytoseiidae): an assessment of 50 generations reared on almond pollen. J Econ Entomol. https://doi.org/10.1093/jee/toab163

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciated the support of this research by the Department of Entomology, Tarbiat Modares University, Iran (Grant No. 9630461004). The editor and two anonymous reviewers improved an earlier version of this manuscript, which is greatly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Fathipour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The manuscript is original and none of the material has been published or is under consideration elsewhere. The experiments used arthropods cultured in accordance with institutional guidelines.

Additional information

Handling Editor: Marta Montserrat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gravandian, M., Fathipour, Y., Hajiqanbar, H. et al. Long-term effects of cattail Typha latifolia pollen on development, reproduction, and predation capacity of Neoseiulus cucumeris, a predator of Tetranychus urticae. BioControl (2021). https://doi.org/10.1007/s10526-021-10116-4

Download citation

Keywords

  • Augmentative biological control
  • Mass rearing
  • Phytoseiidae
  • Population growth
  • Tetranychidae
  • Tetranychus urticae