Skip to main content

The prospects for cryopreservation of noctuid eggs in the mass production of Trichogramma spp.

Abstract

Successful long-term cryopreservation of lepidopteran eggs for the mass production of parasitoids of the genus Trichogramma Westwood (Hymenoptera: Trichogrammatidae) requires a more tolerant species to withstand ultra-low temperatures. We compared the viability of eggs of Anticarsia gemmatalis Hübner (Lepidoptera: Erebidae) and Mythimna sequax Franclemont (Lepidoptera: Noctuidae), cryopreserved in liquid nitrogen, and evaluated the viability of M. sequax eggs to support the large-scale production of high-quality Trichogramma species. The presence of anti-freezing metabolites in lepidopteran eggs was detected and quantified by 1H nuclear magnetic resonance (NMR) spectroscopy. Parasitism by Trichogramma pretiosum Riley of M. sequax eggs stored for 30 days was significantly higher (84.2%) in comparison to A. gemmatalis (6.7%). The 1H NMR spectrum showed that the amounts of anti-freezing metabolites maltodextrin and trehalose were greater in M. sequax eggs, a possible explanation for their suitability to cryopreservation in comparison to A. gemmatalis. Eggs of M. sequax cryopreserved for up to 12 months maintained a mean rate of parasitism between 80 and 90% by Trichogramma atopovirilia Oatman and Platner and T. pretiosum, the latter declining to 79% after 12 months. Both Trichogramma species can exploit long-term storage of M. sequax eggs at ultra-low temperatures, without any apparent fitness penalty to the first generation. This is the first record of eggs of a noctuid species being cryopreserved for up to one year and remaining susceptible to parasitism by Trichogramma species. This procedure should enable large-scale production of hosts with high nutritional quality, and the production of parasitoids that is synchronized better with their use as biological control agents in annual crops.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Anagnostakis I, Papassavas AC, Michalopoulos E, Chatzistamatiou T, Andriopoulou S, Tsakris A, Stavropoulos-Giokas C (2013) Successful short-term cryopreservation of volume-reduced cord blood units in a cryogenic mechanical freezer: effects on cell recovery, viability, and clonogenic potential. Transfus 54:211–223

    Article  CAS  Google Scholar 

  2. Asahina E, Tanno K (1964) A large amount of trehalose in a frost-resistant insect. Nature 204:1222

    CAS  PubMed  Article  Google Scholar 

  3. Bai B, Luck RF, Forster L, Stephens B, Janssen JAM (1992) The effect of host size on quality attributes of the egg parasitoid, Trichogramma pretiosum. Entomol Exp Appl 64:37–48

    Article  Google Scholar 

  4. Becker A, Schlöder P, Steele JE, Wegener G (1996) Regulation of trehalose metabolism in insects. Experimentia 52:433–439

    CAS  Article  Google Scholar 

  5. Block W (1991) To freeze or not to freeze? Invertebrate survival of sub-zero temperatures. Funct Ecol 5:284–290

    Article  Google Scholar 

  6. Carvajal PA, McDonald GA, Lanier TC (1999) Cryostabilization mechanism of fish muscle proteins by maltodextrins. Cryobiol 38:16–26

    CAS  Article  Google Scholar 

  7. Carvalho Spinola-Filho PR, Demolin Leite GL, Soares MA, Alvarenga AC, de Paulo PD, Tuffi-Santos LD, Zanuncio JC (2014) Effects of duration of cold storage of host eggs on percent parasitism and adult emergence of each of ten Trichogrammatidae (Hymenoptera) species. Fla Ent 97:14–21

    Article  Google Scholar 

  8. Cônsoli FL, Kitajima EW, Parra JRP (1999) Ultrastructure of the natural and factitious host eggs of Trichogramma galloi Zucchi and Trichogramma pretiosum Riley (Hym., Trichogrammatidae). Int J Insect Morphol Embryol 28:211–229

    Article  Google Scholar 

  9. Corrêa-Ferreira BS, Oliveira MCN (1998) Viability of Nezara viridula (Linnaeus) eggs for parasitism by Trissolcus basalis (Woll.), under different storage techniques in liquid nitrogen. An Soc Entomol Bras 27:101–107

    Article  Google Scholar 

  10. Corrigan JE, Laing JE (1994) Effects of the rearing host species and the host species attacked on performance by Trichogramma minutum Riley (Hymenoptera, Trichogrammatidae). Environ Entomol 23:755–760

    Article  Google Scholar 

  11. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Ann Rev Physiol 60:73–103

    CAS  Article  Google Scholar 

  12. Crowe LM (2002) Lessons from nature: the role of sugars in anhydrobiosis. Comp Biochem Physiol Part A 131:505–513

    Article  Google Scholar 

  13. Doetzer AK, Foerster LA (2013) Storage of pentatomid eggs in liquid nitrogen and dormancy of Trissolcus basalis (Wollaston) and Telenomus podisi Ashmead (Hymenoptera: Platygastridae) adults as a method of mass production. Neotrop Entomol 42:534–538

    CAS  PubMed  Article  Google Scholar 

  14. El-Wakeil NE (2007) Evaluation of efficiency of Trichogramma evanescens reared on different factitious hosts to control Helicoverpa armigera. J Pest Sci 80:29–34

    Article  Google Scholar 

  15. Favetti BM, Butnariu AR, Doetzer AK (2014) Storage of Euschistus heros eggs (Fabricius) (Heteroptera: Pentatomidae) in liquid nitrogen for parasitization by Telenomus podisi Ashmead (Hymenoptera: Platygastridae). Neotrop Entomol 43:291–293

    CAS  PubMed  Article  Google Scholar 

  16. Greco CF, Stilinovic D (1998) Parasitization performance of Trichogramma spp. (Hym., Trichogrammatidae) reared on eggs of Sitotroga cerealella Oliver (Lep., Gelechidae), stored at freezing and subfreezing conditions. J Appl Entomol 122:311–314

    Article  Google Scholar 

  17. Greene GL, Lepla NC, Dickerson WA (1976) Velvetbean caterpillar: a rearing procedure and artificial medium. J Econ Entomol 69:488–497

    Article  Google Scholar 

  18. Greenberg SM, Nordlund DA, Wu Z (1998) Influence of rearing host on adult size and ovipositional behavior of mass produced female Trichogramma minutum Riley and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). Biol Control 11:43–48

    Article  Google Scholar 

  19. Grenier S, Grille G, Basso C, Pintureau B (2001) Effects of the host species and the number of parasitoids per host on the size of some Trichogramma species (Hymenoptera: Trichogrammatidae). Biocontrol Sci Technol 11:21–26

    Article  Google Scholar 

  20. Hanna AD (1935) Fertility and tolerance of low temperature in Euchalcidia carybori Hanna (Hymenoptera: Chalcidinae). Bull Entomol Res 26:315–322

    Article  Google Scholar 

  21. Hassan AS, Liscsinszky H, Zhang G (2004) The oak-silkworm egg Antheraea pernyi (Lepidoptera: Anthelidae) as a mass rearing host for parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae). Biocontrol Sci Technol 14:269–279

    Article  Google Scholar 

  22. Hoffmann MP, Walker DL, Shelton AM (1995) Biology of Trichogramma ostriniae (Hym.: Trichogrammatidae) reared on Ostrinia nubilalis (Lep.: Pyralidae) and survey for additional hosts. Entomophaga 40:387–402

    Article  Google Scholar 

  23. Hoffmann MP, Ode PR, Walker DL, Gardner J, van Nouhuys S, Shelton AM (2001) Performance of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) reared on factitious hosts, including the target host, Ostrinia nubilalis (Lepidoptera: Crambidae). Biol Control 21:1–10

    Article  Google Scholar 

  24. Hoffmann-campo CB, Oliveira EB, Moscardi F (1985) Criação massal da lagarta da soja (Anticarsia gemmatalis). EMBRAPA CNPSo. Documentos, 10. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/23224/1/Doc1.pdf. Accessed 20 July 2020

  25. Hohmann CL, Luck RF, Oatman ER (1988) A comparison of longevity and fecundity of adult Trichogramma platneri (Hymenoptera: Trichogrammatidae) reared from eggs of the cabbage looper and the Angumouis grain moth, with and without access to honey. J Econ Entomol 81:1307–1312

    Article  Google Scholar 

  26. Holmstrup M, Bayley M, Pedersen SA, Zachariassen KE (2010) Interactions between cold, desiccation and environmental toxins. In: Denlinger DL, Lee RE (eds) Low temperature biology of insects. Cambridge University Press, New York, pp 166–188

    Chapter  Google Scholar 

  27. Honda JY, Luck RF (2001) Interactions between host attributes and wasp size: a laboratory evaluation of Trichogramma platneri as an augmentative biological control agent for two avocado pests. Entomol Exp 100:1–13

    Article  Google Scholar 

  28. Huang YC, Wu H, Song ZW, Li DS, Zhang GR (2017) Effects of cold storage on the chemical composition of Corcyra cephalonica eggs by 1H NMR spectroscopy. Biol Control 110:25–32

    CAS  Article  Google Scholar 

  29. Irdani T, Cosi E, Roversi PF (2007) The challenge of preserving invertebrate species by cryopreservation. Adv Hortic Sci 21:274–276

    Google Scholar 

  30. Jalali SK, Mohanraj P, Lakshmi BL (2016) Trichogrammatids. In: Omkar O (ed) Ecofriendly pest management for food security. Academic Press, San Diego, pp 139–181

    Chapter  Google Scholar 

  31. Kandror O, Deleon A, Goldberg AL (2002) Trealose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Krazmer DJ, Luck RF (1995) Field tests of size-fitness hypothesis in the egg parasitoid Trichogramma pretiosum. Ecology 76:412–425

    Article  Google Scholar 

  33. Krechemer FS, Foerster LA (2016) Mass production of Trichogramma spp. using Mythimna sequax eggs stored in liquid nitrogen. BioControl 61:497–505

    Article  Google Scholar 

  34. Lecchi L, Giovanelli S, Gagliardi B, Pezzali I, Ratti I, Marconi M (2016) An update on methods for cryopreservation and thawing of hemopoietic stem cells. Transfus Apheresis Sci 54:324–336

    Article  Google Scholar 

  35. Leopold RA (1998) Cold storage of insects for integrated pest management. In: Hallman GJ, Denlinger DL (eds) Temperature sensitivity in insects and application in integrated pest management. Westview Press, Boulder, pp 235–268

    Google Scholar 

  36. Li TH, Tian CY, Zang LS, Hou YY, Ruan CC, Yang X, Monticelle L, Desneux N (2019) Multiparasitism with Trichogramma dendrolimi on egg of Chinese oak silkworm, Antheraea pernyi, enhances emergence of Trichogramma ostriniae. J Pest Sci 92:707–713

    Article  Google Scholar 

  37. Lohmann T, Martinazzo T, Pietrowski V, Gibbert F, Kraemer B (2007) Viabilidade do armazenamento de ovos de Anagasta kuehniella, Zeller (Lepidoptera: Pyralidae) em nitrogênio líquido para a produção de Trichogramma pretiosum, Riley (Hymenoptera: Trichogrammatidae). Rev Bras Agroecol 2:1551–1555

    Google Scholar 

  38. Marchioro CA, Foerster LA (2012) Performance of the wheat armyworm, Mythimna sequax Franclemont, on natural and artificial diets. Neotrop Entomol 41:288–295

    CAS  PubMed  Article  Google Scholar 

  39. Martel V, Darrouzet É, Boivin G (2011) Phenotypic plasticity in the reproductive traits of a parasitoid. J Insect Physiol 57:682–687

    CAS  PubMed  Article  Google Scholar 

  40. Medina JR, Garrote RL (2002) The effect of two cryoprotectant mixtures on frozen surubí surimi. J Chem Eng 19:419–424

    CAS  Google Scholar 

  41. Mills N (2010) Egg parasitoids in biological control and integrated pest management. In: Cônsoli FL, Parra JRP, Zucchi RA (eds) Egg parasitoids in agroecosystems with emphasis on Trichogramma. Springer, Dordrecht, pp 389–412

    Google Scholar 

  42. Nagaraju J, Abraham EG (1995) Purification and characterization of a digestive amylase from the tasar silkworm Antheraea mylitta (Lepidoptera: Saturniidae). Comp Biochem Physiol B 110:201–209

    Article  Google Scholar 

  43. Navarro MA (1998) Trichogramma spp.: producción, uso y manejo en Colombia. Impretec, Guadalajara de Buga

    Google Scholar 

  44. Ohtake S, Wang YJ (2011) Trehalose: current use and future applications. J Pharm Sci 100:1997–2515

    Article  CAS  Google Scholar 

  45. Paixão MF, Foerster LA, do Foerster M (2018) The potential of Mythimna sequax Franclemont eggs for the production of Trichogramma spp. after cryopreservation in liquid nitrogen. Rev Cienc Agron 49:70–77

    Article  Google Scholar 

  46. Parra JRP (2014) Biological control in Brazil: an overview. Sci Agric 715:420–429

    Article  Google Scholar 

  47. Peverieri GS, Furlan P, Benassai D, Strong WB, Roversi PF (2015) Long-term storage of eggs of Leptoglossus occidentalis for the mass-rearing of its parasitoid Gryon pennsylvanicum. BioControl 60:293–306

    Article  Google Scholar 

  48. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/

  49. Rajamohan A, Rinehart JP, Leopold RA (2014) Cryopreservation of embryos of Lucilia sericata (Diptera: Calliphoridae). J Med Entomol 51:360–367

    PubMed  Article  Google Scholar 

  50. Rathee M, Ram P (2018) Impact of cold storage on the performance of entomophagous insects: an overview. Phytoparasitica 46:421–449

    Article  Google Scholar 

  51. Reddy KBPK, Awasthi SP, Madhu AN, Prapulla SG (2009) Role of cryoprotectants on the viability and functional properties of probiotic lactic acid bacteria during freeze drying. Food Biotechnol 23:243–265

    CAS  Article  Google Scholar 

  52. Rodrigues SMM, Sampaio MV (2011) Armazenamento de Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) em baixas temperaturas. Arq Inst Biol 78:45–51

    Article  Google Scholar 

  53. Rozsypal J (2015) The role of water, ice nucleators, and inoculation in insect cold survival. Insect Physiol 5:21–30

    Google Scholar 

  54. Rundle BJ, Thomson LJ, Hoffmann AA (2004) Effects of cold storage on field and laboratory performance of Trichogramma carverae (Hymenoptera: Trichogrammatidae) and the response of three Trichogramma spp. (T. carverae, T. nr. brassicae, and T. funiculatum) to cold. J Econ Entomol 97:213–221

    PubMed  Article  Google Scholar 

  55. Santana-Filho AP, Jacomasso T, Riter DS, Barison A, Iacomini M, Winnischofer SM, Sassaki GL (2017) NMR metabolic fingerprints of murine melanocyte and melanoma cell lines: application to biomarker discovery. Sci Rep 7:423–424

    Article  CAS  Google Scholar 

  56. Schread JC, Garman P (1934) Some effects of refrigeration on the biology of Trichogramma in artificial breeding. J Entomol Soc 42:268–283

    Google Scholar 

  57. St-Onge M, Cormier D, Todorova S, Lucas E (2015) Conservation of Ephestia kuehniella eggs as hosts for Trichogramma ostriniae. J Appl Entomol 140:218–222

    Article  Google Scholar 

  58. Tezze AA, Botto EN (2004) Effect of cold storage on the quality of Trichogramma nerudai (Hymenoptera: Trichogrammatidae). Biol Control 30:11–16

    Article  Google Scholar 

  59. Thompson SN (1990) NMR spectroscpy: its basis, biological application and use in studies of insect’s metabolism. Insect Biochem 20:223–237

    CAS  Article  Google Scholar 

  60. Wu H, Huang YC, Guo JX, Liu JB, Lai XS, Song ZW, Li DS, Zhang GR (2018) Effect of cold storage of Corcyra cephalonica eggs on the fitness for Trichogramma chilonis. Biol Control 124:40–45

    Article  Google Scholar 

  61. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cryoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    CAS  PubMed  Article  Google Scholar 

  62. Zachariassen EK (1985) Physiology of cold tolerance in insects. Physiol Rev 65:799–832

    CAS  PubMed  Article  Google Scholar 

  63. Zang LS, Wang S, Zhang F, Desneux N (2021) Biological control with Trichogramma in China: history, present status and perspectives. Ann Rev Entomol 66:463–484

    CAS  Article  Google Scholar 

  64. Zhang JJ, Zhang X, Zang LS, Du WM, Hou YY, Ruan CC, Desneux N (2018) Advantages of diapause in Trichogramma dendrolimi mass production on eggs of the Chinese silkworm, Antheraea pernyi. Pest Manag Sci 74:959–965

    CAS  PubMed  Article  Google Scholar 

  65. Zheng Z, Xu Y, Sun Y, Mei W, Ouyang J (2015) Biocatalytic production of trehalose from maltose by using whole cells of permeabilized recombinant Escherichia coli. PLoS ONE 10(10):e0140477

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Coordination for the Improvement of Higher Education Personnel—Capes [for granting the scholarships to MFP and TAT]; to the National Council for Scientific and Technological Development to MFP [grant number CNPq- 433867/2018-3], GLS [grant number CNPq-303352/2017-5; 430922/2018-3] and LAF [grant number 307853/2016-0]. Thanks to Dr. Adriana Rute C. Caillot and Dr. Arquimedes Paixão of the Carbohydrate Chemistry Laboratory of the Department of Biochemistry of the Federal University of Paraná and UFPR NMR Center for their collaboration on the methodology and NMR analysis of the metabolites. We are grateful to Dr. Robert M. Perrin, retired entomologist from Syngenta at Jealott’s Hill International Research Centre, UK for the thorough revision and relevant suggestions that significantly improved the quality of the text.

Author information

Affiliations

Authors

Contributions

The authors MFP and LAF contributed to the study conception and design. Secured funding, material preparation, data collection and analysis were performed by MFP, TAT and GLS. The manuscript was written by MFP and LAF. All authors commented on previous versions of the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Magda F. Paixão.

Ethics declarations

Conflict of interest

I, Magda Fernanda Paixão, author responsible for submitting the manuscript entitled: “The prospects for cryopreservation of noctuid eggs in the mass production of Trichogramma spp.”, and all the co-authors who present themselves in this work, declare that they have no conflicts of interests.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Handling Editor: Josep Anton Jaques Miret

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paixão, M.F., Takahashi, T.A., Sassaki, G.L. et al. The prospects for cryopreservation of noctuid eggs in the mass production of Trichogramma spp.. BioControl (2021). https://doi.org/10.1007/s10526-021-10109-3

Download citation

Keywords

  • Biological control
  • Egg-parasitoid
  • Trichogramma pretiosum
  • Trichogramma atopovirilia
  • Cold storage
  • Trehalose