Non-consumptive effects of Encarsia formosa on the reproduction and metabolism of the whitefly Bemisia tabaci

Abstract

The impact of predatory or parasitic natural enemies on their pest prey or hosts arises not only through consumption but also through non-consumptive effects. Multiple studies have investigated the impacts of non-consumptive effects from predators on the behaviour, development and metabolism of invertebrate pests. However, the non-consumptive effects from parasitoids on their insect hosts remain less well understood. Here, we investigated the non-consumptive effects of the parasitoid Encarsia formosa on the fecundity, longevity and metabolism of the whitefly Bemisia tabaci. Results showed that both the fecundity and longevity of whitefly females were significantly reduced when the whiteflies were threatened by Encarsia parasitoids during their nymphal stages. In addition, we tested three costly and potential physiological correlates that may contribute to the fecundity and longevity variation of B. tabaci under the non-consumptive effects: the relative expression level of vitellogenin and its receptor genes (Vg and Vgr), relative expression level of stress proteins (Hsp70 and Hsp90) and the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). When B. tabaci 4th instar nymphs were threatened for 24 h by E. formosa the relative expression levels of Vg and Vgr were reduced, whereas Hsp70 and Hsp90 were significantly increased. SOD and CAT activities were distinctly up-regulated while POD activity was down-regulated. We propose that, in order to counteract the negative effects of non-consumption, whitefly nymphs need to adjust their performance by changing the expression of related metabolic genes in an energetic cost way, thus reducing the fecundity and longevity of female adults.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    CAS  Article  Google Scholar 

  2. Allo NM, Mekhlif AF (2019) Role of the predator Anisops sardea (hemiptera: notonectidae) in control mosquito Culex pipiens molestus (diptera: culicidae) population. Int. J. Mosquito Res. 6:46–50

    Google Scholar 

  3. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. Benard MF (2004) Predator-induced phenotypic plasticity in organisms with complex life histories. Annu Rev Ecol Evol Syst 35(1):651–673

    Article  Google Scholar 

  5. Boisclair J, Brueren GJ, van Lenteren JC (1990) Can Bemisia tabaci be controlled with Encarsia formosa? SROP/WPRS Bull 5:32–35

    Google Scholar 

  6. Chen W, Hasegawa DK, Kaur N, Kliot A, Pinheiro PV, Luan J, Stensmyr MC, Zheng Y, Liu W, Sun H, Xu Y, Luo Y, Kruse A, Yang X, Kontsedalov S, Lebedev G, Fisher TW, Nelson DR, Hunter WB, Brown JK, Jander G, Cilia M, Douglas AE, Ghanim M, Simmons AM, Wintermantel WM, Ling KS, Fei Z (2016) The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol 14:110

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. Corona M, Velarde RA, Remolina S, Moran-Lauter A, Wang Y, Hughes KA, Robinson GE (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. PNAS 104(17):7128–7133

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Díaz F, Orobio RF, Chavarriaga P, Toro-Perea N (2015) Differential expression patterns among heat-shock protein genes and thermal responses in the whitefly Bemisia tabaci (MEAM 1). J Therm Biol 52:199–207

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. Ebrahim SA, Dweck HK, Stokl J, Hofferberth JE, Trona F, Weniger K, Rybak J, Seki Y, Stensmyr MC, Sachse S, Hansson BS, Knaden M (2015) Drosophila avoids parasitoids by sensing their semiochemicals via a dedicated olfactory circuit. PLoS Biol 13(12):e1002318

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Article  Google Scholar 

  11. Fill A, Long EY, Finke DL (2012) Non-consumptive effects of a natural enemy on a non-prey herbivore population. Ecol Entomol 37:43–50

    Article  Google Scholar 

  12. Gerling D (1966) Biological studies on Encarsia formosa (hymenoptera: aphelinidae). Ann Entomol Soc Am 59:142–143

    Article  Google Scholar 

  13. Hawkins BA, Cornell HV, Hochberg ME (1997) Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78:2145–2152

    Article  Google Scholar 

  14. Hawlena D, Kress H, Dufresne ER, Schmitz OJ (2010) Grasshoppers alter jumping biomechanics to enhance escape performance under chronic risk of spider predation. Funct Ecol 25(1):279–288

    Article  Google Scholar 

  15. He Z, Liu Y, Wang L, Guo Q, Ali S, Chen XS, Qiu BL (2018) Risk assessment of two insecticides on Encarsia formosa, parasitoid of whitefly Bemisia tabaci. Insects 9(3):116

    PubMed Central  Article  PubMed  Google Scholar 

  16. Hermann SL, Landis DA (2017) Scaling up our understanding of non-consumptive effects in insect systems. Curr Opin Insect Sci 20:54–60

    PubMed  Article  Google Scholar 

  17. Huo Y, Chen XY, Fang RX, Zhang LL (2018) Study on the production of vitellogenin and its non-nutritional functions. Biotechnol Bull 34:66–73

    Google Scholar 

  18. Ingerslew KS, Finke DL (2017) Mechanisms underlying the nonconsumptive effects of parasitoid wasps on aphids. Environ Entomol 46:75–83

    CAS  PubMed  Google Scholar 

  19. Jia FX, Dou W, Hu F, Wang JJ (2011) Effects of thermal stress on lipid peroxidation and antioxidant enzyme activities of oriental fruit fly, Bactrocera dorsalis (diptera: tephritidae). Fla Entomol 94:956–963

    CAS  Article  Google Scholar 

  20. Krishnan N, Kodrı´k D (2006) Antioxidant enzymes in Spodoptera littoralis (boisduval): are they enhanced to protect gut tissues during oxidative stress. J Insect Physiol 52:11–20

    CAS  Article  Google Scholar 

  21. Li C, Wang Y, Wang G, Chen Y, Guo J, Pan C, Liu E, Ling Q (2019) Physicochemical changes in liver and Hsc70 expression in pikeperch Sander lucioperca under heat stress. Ecotoxicol Environ Saf 181:130–137

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  22. Liu X, Zhang Y, Xie W, Wu Q, Wang S (2016) The suitability of biotypes Q and B of Bemisia tabaci (gennadius) (Hemiptera: Aleyrodidae) at different nymphal instars as hosts for Encarsia formosa Gahan (Hymenoptera: Aphelinidae). PeerJ 4:e1863

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Luan JB, Wang YL, Wang J, Wang XW, Liu SS (2013) Detoxification activity and energy cost is attenuated in whiteflies feeding on tomato yellow leaf curl China virus-infected tobacco plants. Insect Mol Biol 22:597–607

    CAS  PubMed  Article  Google Scholar 

  24. Luttbeg B, Kerby JL (2005) Are scared prey as good as dead? Trends Ecol Evol 20:416–418

    PubMed  Article  Google Scholar 

  25. Michael CM, Andrew S, Jay AR (2020) Bugs scaring bugs: enemy-risk effects in biological control systems. Ecol Lett 23:1693–1714

    Article  Google Scholar 

  26. Moll RJ, Redilla KM, Mudumba T, Muneza AB, Gray SM, Abade L, Hayward MW, Millspaugh JJ, Montgomery RA (2017) The many faces of fear: a synthesis of the methodological variation in characterizing predation risk. J Anim Ecol 86(4):749–765

    PubMed  Article  Google Scholar 

  27. Mondor EB, Roitberg BD (2002) Pea aphid, Acyrthosiphon pisum, cornicle ontogeny as an adaptation to differential predation risk. Can J Zool 80:2131–2136

    Article  Google Scholar 

  28. Nelson EH (2007) Predator avoidance behavior in the pea aphid: costs, frequency, and population consequences. Oecologia 151:22–32

    PubMed  Article  Google Scholar 

  29. Peacor SD, Barton BT, Kimbro DL, Sih A, Sheriff MJ (2020) A framework and standardized terminology to facilitate the study of predation-risk effects. Ecology 101:e03152

    PubMed  Article  Google Scholar 

  30. Peckarsky BL, Abrams PA, Bolnick DI, Dill LM, Grabowski JH, Luttbeg B, Orrock JL, Peacor SD, Preisser EL, Schmitz OJ, Trussell GC (2008) Revisiting the classics considering nonconsumptive effects in textbook examples of predator–prey interactions. Ecology 89:2416–2425

    PubMed  Article  PubMed Central  Google Scholar 

  31. Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86(2):501–509

    Article  Google Scholar 

  32. Qiu BL, Susan AC, Ren SX, Ali MI, Xu CX, Brown JK (2007a) Phylogenetic relationship of native and introduced Bemisia tabaci (Homoptera: Aleyrodidae) from China and India based on mtCOI DNA sequencing and host plant comparisons. Prog Nat Sci 17(6):645–654

    CAS  Article  Google Scholar 

  33. Qiu BL, De Barro PJ, He YR, Ren SX (2007b) Suitability of Bemisia tabaci (Hemiptera: Aleyrodidae) instars for the parasitization by Encarsia bimaculata and Eretmocerus sp nr. furuhashii (Hymenoptera: Aphelinidae) on glabrous and hirsute host plants. Biocontrol Sci Technol 17:823–839

    Article  Google Scholar 

  34. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Rosenheim JA (1998) Higher-order predators and the regulation of insect herbivore populations. Annu Rev Entomol 43:421–447

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AMK (2007) Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 9(1):49–89

    CAS  PubMed  Article  Google Scholar 

  37. Schmitz OJ (1997) Direct and indirect effects of predation and predation risk in old-field interaction webs. Am Nat 151:327–342

    Article  Google Scholar 

  38. Sheriff MJ, Thaler JS (2014) Ecophysiological effects of predation risk; an integration across disciplines. Oecologia 176:607–611

    PubMed  Article  Google Scholar 

  39. Slos S, Stoks R (2008) Predation risk induces stress proteins and reduces antioxidant defense. Funct Ecol 22(4):637–642

    Article  Google Scholar 

  40. Slos S, Meester LD, Stoks R (2009a) Food level and sex shape predator-induced physiological stress: immune defence and antioxidant defence. Oecologia 161(3):461–467

    PubMed  Article  Google Scholar 

  41. Slos S, Meester LD, Stoks R (2009b) Behavioural activity levels and expression of stress proteins under predation risk in two damselfly species. Ecol Entomol 34:297–303

    Article  Google Scholar 

  42. Snyder WE, Ives AR (2001) Generalist predators disrupt biological control by a specialist parasitoid. Ecology 82:705–716

    Article  Google Scholar 

  43. Stoks R, Block MD, McPeek MA (2005) Alternative growth and energy storage responses to mortality threats in damselflies. Ecol Lett 8(12):1307–1316

    Article  Google Scholar 

  44. Tahir M, Hamza A, Khalid N, Khan AA, Shahzad U (2017) Indirect effect of spiders on herbivory of insects: a review. J Entomol Zool Stud 5(4):753–757

    Google Scholar 

  45. Thaler JS, McArt SH, Kaplan I (2012) Compensatory mechanisms for ameliorating the fundamental trade-off between predator avoidance and foraging. PNAS 109(30):12075–12080

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Thaler JS, Contreras H, Davidowitz G (2014) Effects of predation risk and plant resistance on Manduca sexta caterpillar feeding behaviour and physiology. Ecol Entomol 39(2):210–216

    Article  Google Scholar 

  47. Thomson RL, Tomas G, Forsman JT, Broggi J, Monkkonen M (2010) Predator proximity as a stressor in breeding flycatchers: mass loss, stress protein induction, and elevated provisioning. Ecology 91(6):1832–1840

    PubMed  Article  PubMed Central  Google Scholar 

  48. Valle D (1993) Vitellogenesis in insects and other groups: a review. Mem Inst Oswaldo Cruz 88:1–26

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. van Uitregt VO, Hurst TP, Wilson RS (2012) Reduced size and starvation resistance in adult mosquitoes, Aedes notoscriptus, exposed to predation cues as larvae. J Anim Ecol 81:108–115

    PubMed  Article  PubMed Central  Google Scholar 

  50. Vetter JL, Steinberg MP, Nelson AI (1958) Enzyme assay, quantitative determination of peroxidase in sweet corn. J Agric Food Chem 6:39–41

    CAS  Article  Google Scholar 

  51. Viggiani G (2000) The role of parasitic hymenoptera in integrated pest management in fruit orchards. Crop Prot 19:665–668

    Article  Google Scholar 

  52. Walzer A, Schausberger P (2009) Non-consumptive effects of predatory mites on thrips and its host plant. Oikos 118(1):934–940

    Article  Google Scholar 

  53. Wang Y, Oberley LW, Murhammer DW (2001) Antioxidant defense systems of two lipidopteran insect cell lines. Free Radic Biol Med 30(11):1254–1262

    CAS  PubMed  Article  Google Scholar 

  54. Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84(5):1083–1100

    Article  Google Scholar 

  55. Xiong XF, Michaud JP, Li Z, Wu PX, Chu YN, Zhang QW, Liu XX (2015) Chronic, predator-induced stress alters development and reproductive performance of the cotton bollworm Helicoverpa armigera. BioControl 60(6):827–837

    Article  Google Scholar 

  56. Zang LS, Liu TX, Zhang F, Shi SS, Wan FH (2011) Mating and host density affect host feeding and parasitism in two species of whitefly parasitoids. Insect Sci 18(1):78–83

    Article  Google Scholar 

  57. Zhang SC, Wang SH, Li HY, Li L (2011) Vitellogenin, a multivalent sensor and an antimicrobial effector. Int J Biochem Cell Biol 43(3):303–305

    CAS  PubMed  Article  Google Scholar 

  58. Zhou JC, Meng L, Li BP (2019) Non-reproductive effects of two parasitoid species on the oriental armyworm Mythimna separata on wheat and maize plants. BioControl 64:115–124

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by grants from The National Key Research and Development Program of China (Grant No. 2019YFD1002100). The authors also thank Dr Andrew G. S. Cuthbertson (York, UK) for his critical comments on an earlier manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bao-Li Qiu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human or animals participants performed by any of the authors.

Additional information

Handling Editor: Stefano Colazzza

Supplementary Information

Below is the link to the electronic supplementary material.

10526_2021_10099_MOESM1_ESM.tif

Supplementary file1 (TIF 384 KB) Fig. S1 Visual diagram of the method used for non-consumptive effects on the fecundity and longevity of Bemisia tabaci

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, ZY., Zhu, ZP., Peng, J. et al. Non-consumptive effects of Encarsia formosa on the reproduction and metabolism of the whitefly Bemisia tabaci. BioControl (2021). https://doi.org/10.1007/s10526-021-10099-2

Download citation

Keywords

  • Bemisia tabaci
  • Encarsia formosa
  • Non-consumptive effects
  • Reproduction
  • Physiological metabolism