Natural enemies associated with Tuta absoluta and functional biodiversity in vegetable crops

Abstract

Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) is considered one of the main pests threatening tomato production worldwide. In the Mediterranean, the use of predatory mirids is widespread, and although several larval parasitoid species have been recorded in the area, their contribution to the biological control of the pest is often neglected. With the general objective of improving the biological control of T. absoluta, our field study aimed to determine the relative abundance of natural enemies associated with T. absoluta in tomato fields and to assess whether insectary plants placed in the vicinity of vegetable crops would help to improve functional biodiversity in the farms. The study was conducted during two years in six commercial tomato fields in Northeast Spain that were managed using an integrated pest management program based on predatory mirid conservation. Our results indicated that Necremnus tutae Ribes & Bernardo (Hymenoptera: Eulophidae) was by far the main natural enemy responsible for larval parasitism of T. absoluta. The flowering plants used in the present study were attractive to several natural enemies that are of interest not only for tomato but also for other vegetable crops coexisting at the farm level, including parasitoid wasps, hoverflies, and other important beneficials, such as Orius spp., ladybeetles and predatory thrips.

This is a preview of subscription content, access via your institution.

Fig. 1

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Abbes K, Biondi A, Zappalà L, Chermiti B (2014) Fortuitous parasitoids of the invasive tomato leafminer Tuta absoluta in Tunisia. Phytoparasitica 42:85–92

    Article  Google Scholar 

  2. Agustí N, Castañé C, Fraile I, Alomar O (2020) Development of a PCR-based method to monitor arthropod dispersal in agroecosystems: Macrolophus pygmaeus (Hemiptera: Miridae) from banker plants to tomato crops. Insect Sci 27:1125–1134

    PubMed  Article  CAS  Google Scholar 

  3. Ambrosino MD, Luna JM, Jepson PC, Wratten SD (2006) Relative frequencies of visits to selected insectary plants by predatory hoverflies (Diptera: Syrphidae), other beneficial insects, and herbivores. Environ Entomol 35:394–400

    Article  Google Scholar 

  4. Aparicio Y, Riudavets J, Gabarra R, Agustí N, Rodríguez-Gasol N, Alins G, Blasco-Moreno A, Arnó J (2021) Can insectary plants enhance the presence of natural enemies of the Green Peach Aphid (Hemiptera: Aphididae) in Mediterranean Peach Orchards? J Econ Entomol 114:784–793

    PubMed  Article  Google Scholar 

  5. Ardanuy A, Figueras M, Matas M, Madeira F, Arnó J, Alomar O, Albajes R, Gabarra R (2021) Banker plants and landscape composition influence colonisation precocity of tomato greenhouses by mirid predators. J Pest Sci. https://doi.org/10.1007/s10340-021-01387-y

    Article  Google Scholar 

  6. Arnó J, Castañé C, Alomar O, Riudavets J, Agustí N, Gabarra R, Albajes R (2018a) Forty years of biological control in Mediterranean tomato greenhouses: the story of success. Isr J Entomol 48:209–226

    Google Scholar 

  7. Arnó J, Gabarra R, Alomar O (2012) Hymenoptera abundance on candidate plants for conservation biological control. IOBC/WPRS Bull 75:13–16

    Google Scholar 

  8. Arnó J, Oveja MF, Gabarra R (2018b) Selection of flowering plants to enhance the biological control of Tuta absoluta using parasitoids. Biol Control 122:41–50

    Article  Google Scholar 

  9. Arnó J, Sorribas R, Prat M, Matas M, Pozo C, Rodríguez D, Garreta A, Gómez A, Gabarra R (2009) Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain. IOBC/WPRS Bull 9:203–208

    Google Scholar 

  10. Askew RR (1968) Handbooks for the identification of British insects. Vol. VIII. Hymenoptera 2. Chalcidoidea section (b). Royal Entomological Society of London. London

  11. Badenes-Pérez FR (2019) Trap crops and insectary plants in the order Brassicales. Ann Entomol Soc Am 112:318–329

    Article  Google Scholar 

  12. Badenes-Pérez FR, Márquez BP, Petitpierre E (2017) Can flowering Barbarea spp. (Brassicaceae) be used simultaneously as a trap crop and in conservation biological control? J Pest Sci 90:623–633

    Article  Google Scholar 

  13. Balzan MV, Wäckers FL (2013) Flowers to selectively enhance the fitness of a host-feeding parasitoid: adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biol Control 67:21–31

    Article  Google Scholar 

  14. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  15. Biondi A, Guedes RNC, Wan FH, Desneux N (2018) Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Ann Rev Entomol 63:239–258

    CAS  Article  Google Scholar 

  16. Blaauw BR, Isaacs R (2012) Larger wildflower plantings increase natural enemy density, diversity, and biological control of sentinel prey, without increasing herbivore density. Ecol Entomol 37:386–394

    Article  Google Scholar 

  17. Bodino N, Ferracini C, Tavella L (2016) Is host selection influenced by natal and adult experience in the parasitoid Necremnus tutae (Hymenoptera: Eulophidae)? Anim Behav 112:221–228

    Article  Google Scholar 

  18. Calvo FJ, Soriano JD, Bolckmans K, Belda JE (2013) Host instar suitability and life-history parameters under different temperature regimes of Necremnus artynes on Tuta absoluta Biocontrol. Sci Technol 23:803–815

    Google Scholar 

  19. Calvo FJ, Soriano JD, Stansly PA, Belda JE (2016) Can the parasitoid Necremnus tutae (Hymenoptera: Eulophidae) improve existing biological control of the tomato leafminer Tuta aboluta (Lepidoptera: Gelechiidae)? Bull Entomol Res 106:502–511

    CAS  PubMed  Article  Google Scholar 

  20. Carreck NL, Williams IH (1997) Observations on two commercial flower mixtures as food sources for beneficial insects in the UK. J Agric Sci Camb 128:397–403

    Article  Google Scholar 

  21. Chailleux A, Desneux N, Arnó J, Gabarra R (2014) Biology of two key Palearctic larval ectoparasitoids when parasitizing the invasive pest Tuta absoluta. J Pest Sci 87:441–448

    Article  Google Scholar 

  22. Crisol-Martínez E, van der Blom J (2019) Necremnus tutae (Hymenoptera, Eulophidae) is widespread and efficiently controls Tuta absoluta in tomato greenhouses in SE Spain. IOBC/WPRS Bull 147:22–29

    Google Scholar 

  23. Damien M, Le Lann C, Desneux N, Alford L, Al Hassana D, Georges R, van Baaren J (2017) Flowering cover crops in winter increase pest control but not trophic link diversity. Agric Ecosyst Environ 247:418–425

    Article  Google Scholar 

  24. de Campos MR, Monticelli LS, Béarez P, Amiens-Desneux E, Wang Y, Lavoir AV, Zappalà L, Biondi A, Desneux N (2020) Impact of a shared sugar food source on biological control of Tuta absoluta by the parasitoid Necremnus tutae. J Pest Sci 93:207–218

    Article  Google Scholar 

  25. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vasquez C, González-Cabrera J, Catalán Ruescas D, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: Ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215

    Article  Google Scholar 

  26. Desneux N, Luna MG, Guillemaud T, Urbaneja A (2011) The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J Pest Sci 84:403–408

    Article  Google Scholar 

  27. Dib H, Libourel G, Warlop F (2012) Entomological and functional role of floral strips in an organic apple orchard: Hymenopteran parasitoids as a case study. J Insect Conserv 16:315–318

    Article  Google Scholar 

  28. El-Nabawy EM, Tsuda K, Sakamaki Y (2015) Attractiveness of spiders and insect predators and parasitoids to flowering plants. Egypt J Biol Pest Cont 25:245–250

    Google Scholar 

  29. Ferracini C, Ingegno BL, Navone P, Ferrari E, Mosti M, Tavella L, Alma A (2012) Adaptation of indigenous larval parasitoids to Tuta absoluta (Lepidoptera: Gelechiidae) in Italy. J Econ Entomol 105:1311–1319

    PubMed  Article  Google Scholar 

  30. Fiedler AK, Landis DA, Wratten SD (2008) Maximizing ecosystem services from conservation biological control: the role of habitat management. Biol Control 45:254–271

    Article  Google Scholar 

  31. Fox J, Weisberg S (2019) An R companion to applied regression, 3rd edn. Sage, Thousand Oaks. https://socialsciences.mcmaster.ca/jfox/Books/Companion

  32. Gabarra R, Arnó J, Lara L, Verdú MJ, Ribes A, Beitia F, Urbaneja A, Téllez MM, Mollá O, Riudavets J (2014) Native parasitoids associated with Tuta absoluta in the tomato production areas of the Spanish Mediterranean Coast. BioControl 59:45–54

    Article  Google Scholar 

  33. Gebiola M, Bernardo U, Ribes A, Gibson GAP (2015) An integrative study of Necremnus Thomson (Hymenoptera: Eulophidae) associated with invasive pests in Europe and North America: Taxonomic and ecological implications. Zool J Linn Soc-Lond 173:352–423

    Article  Google Scholar 

  34. Gibson DR, Rowe K, Isaacs R, Landis DA (2019) Screening drought-tolerant native plants for attractiveness to arthropod natural enemies in the U.S. Great Lakes Region. Environ Entomol 48:1469–1480

    PubMed  Google Scholar 

  35. Grissell EE, Schauff ME (1990) A handbook of the families of Nearctic Chalcidoidea (Hymenoptera). Entomol. Soc. Wash, Washington, DC

    Google Scholar 

  36. Han P, Bayram Y, Shaltiel-Harpaz L, Sohrabi F, Saji A, Tair Esenali U, Jalilov A, Ali A, Shashank PR, Ismoilov K, Lu ZZ, Wang S, Zhang GF, Wan FH, Biondi A, Desneux N (2019) Tuta absoluta continues to disperse in Asia: Damage, ongoing management and future challenges. J Pest Sci 92:1317–1327

    Article  Google Scholar 

  37. Hanson PE, Gauld ID (2006) Hymenoptera de la región Neotropical. Memoirs of the American Entomological Institute 77. The American Entomological Institute. Gainesville

  38. Heimpel GE (2019) Linking parasitoid nectar feeding and dispersal in conservation biological control. Biol Control 132:36–41

    Article  Google Scholar 

  39. Ingegno BL, Messelink GJ, Bodino N, Iliadou A, Driss L, Woelke JB, Leman A, Tavella L (2019) Functional response of the mirid predators Dicyphus bolivari and Dicyphus errans and their efficacy as biological control agents of Tuta absoluta on tomato. J Pest Sci 92:1457–1466

    Article  Google Scholar 

  40. Lundin O, Ward KL, Williams NM (2019) Identifying native plants for coordinated habitat management of arthropod pollinators, herbivores and natural enemies. J Appl Ecol 56:665–676

    Article  Google Scholar 

  41. Manojlovic B, Zabel A, Kostic M, Stankovic S (2000) Effect of nutrition of parasites with nectar of melliferous plants on parasitism of the elm bark beetles (Col., Scolytidae). J Appl Entomol 124:155–161

    Article  Google Scholar 

  42. Mansour R, Brévault T, Chailleux A, Cherif A, Grissa-Lebdi K, Haddi K, Mohamed SA, Nofemela RS, Oke A, Sylla S, Tonnang HE (2018) Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol Gen 38:83–112

    Article  Google Scholar 

  43. Matas M (2014) Control biológico en el tomate en el Maresme. Conservación de enemigos naturales y gestión de infraestructuras ecológicas. Phytoma-España 262:56

  44. Portillo N, Alomar O, Wäckers FL (2012) Nectarivory by the plant-tissue feeding predator Macrolophus pygmaeus Rambur (Heteroptera: Miridae): nutritional redundancy or nutritional benefit? J Insect Physiol 58:397–401

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Put K, Bollens T, Wäckers FL, Pekas A (2012) Type and spatial distribution of food supplements impact population development and dispersal of the omnivore predator Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae). Biol Control 63:172–180

    Article  Google Scholar 

  46. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/

  47. Riudavets J, Moerman E, Vila E (2020) Implementation of integrated pest and disease management in greenhouses: from research to the consumer. In: Gullino ML, Albajes R, Nicot P (eds) Integrated pest and disease management in greenhouse crops. Plant pathology in the 21st Century, vol 9. Springer, Cham, pp 457–485

    Chapter  Google Scholar 

  48. Rodríguez-Gasol N, Avilla J, Aparicio Y, Arnó J, Gabarra R, Riudavets J, Alegre S, Lordán J, Alins G (2019) The contribution of surrounding margins in the promotion of natural enemies in Mediterranean apple orchards. Insects 10:148

    PubMed Central  Article  PubMed  Google Scholar 

  49. Russell Lenth (2020) emmeans: estimated marginal means, aka least-squares means. R package version 1.5.1. https://cran.r-project.org/web/packages/emmeans/index.html.

  50. Sáez-Bastante J, Fernández-García P, Saavedra M, López-Bellido L, Dorado MP, Pinzi S (2016) Evaluation of Sinapis alba as feedstock for biodiesel production in Mediterranean climate. Fuel 184:656–664

    Article  CAS  Google Scholar 

  51. Salas Gervassio NG, Aquino D, Vallina C, Biondi A, Luna MG (2019) A re-examination of Tuta absoluta parasitoids in South America for optimized biological control. J Pest Sci 92:1343–1357

    Article  Google Scholar 

  52. Sanchez JA, Lacasa A, Arnó J, Castañé C, Alomar O (2009) Life history parameters for Nesidiocoris tenuis (Reuter) (Het., Miridae) under different temperature regimes. J Appl Entomol 133:125–132

    Article  Google Scholar 

  53. Urbaneja A, Montón H, Mollá O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. J Appl Entomol 133:292–296

    Article  Google Scholar 

  54. Urbaneja-Bernat P, Mollá O, Alonso M, Bolkcmans K, Urbaneja A, Tena A (2015) Sugars as complementary alternative food for the establishment of Nesidiocoris tenuis in greenhouse tomato. J Appl Entomol 139:161–167

    CAS  Article  Google Scholar 

  55. Urbaneja A, González-Cabrera J, Arnó J, Gabarra R (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag Sci 68:1215–1222

    CAS  PubMed  Article  Google Scholar 

  56. van Rijn PCJ, Wäckers FL (2016) Nectar accessibility determines fitness, flower choice and abundance of hoverflies that provide natural pest control. J Appl Ecol 53:925–933

    Article  Google Scholar 

  57. Vandekerkhove B, De Clercq P (2010) Pollen as an alternative or supplementary food for the mirid predator Macrolophus pygmaeus. Biol Control 53:238–242

    Article  Google Scholar 

  58. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  59. Wäckers FL (2004) Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biol Control 29:307–314

    Article  Google Scholar 

  60. Wäckers FL, van Rijn PCJ (2005) Food for protection: an introduction. In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 1–14

    Chapter  Google Scholar 

  61. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  62. Winkler K, Wäckers FL, Kaufman LV, Larraz V, van Lenteren JC (2009) Nectar exploitation by herbivores and their parasitoids is a function of flower species and relative humidity. Biol Control 50:299–306

    Article  Google Scholar 

  63. Zappalà L, Biondi A, Alma A, Al-Jboory IJ, Arnó J, Bayram A, Chailleux A, El-Arnaouty A, Gerling D, Guenaoui Y, Shaltiel-Harpaz L, Siscaro G, Stavrinides M, Tavella L, Vercher-Aznar R, Urbaneja A, Desneux N (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J Pest Sci 86:635–647

    Article  Google Scholar 

Download references

Acknowledgements

We thank the technical staff of the Sustainable Plant Protection Programme (IRTA) for their help with the experiments, and Anabel Blasco-Moreno from the Servei d’Estadística Aplicada (Universitat Autònoma de Barcelona) for her support in the statistical analysis. The present research was supported by the Spanish Ministry of Economy and Competitiveness (Projects AGL2013-49164-C2-2-R and AGL2016-77373-C2-1-R) and the CERCA Programme/Generalitat de Catalunya. Yahana Aparicio was supported by a grant provided by CONACyT (Mexico) and Carmen Denis by a PhD grant of BECAL-PY. We are in debt to the farmers that kindly allowed us to conduct the experiments in their fields and the pest advisors of ADV Baix Maresme and Selmar, who provided us with technical support. We also appreciated the insightful comments of anonymous reviewers and the editor that clearly improved the quality of the manuscript.

Author information

Affiliations

Authors

Contributions

JA, RG, and JR conceived and designed the research. All authors conducted experiments and analyzed data. JA and JR wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jordi Riudavets.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any study with human participants or vertebrate animals.

Additional information

Handling Editor: Dirk Babendreier

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arnó, J., Molina, P., Aparicio, Y. et al. Natural enemies associated with Tuta absoluta and functional biodiversity in vegetable crops. BioControl (2021). https://doi.org/10.1007/s10526-021-10097-4

Download citation

Keywords

  • Conservation biological control
  • Tomato
  • Lobularia maritima
  • Sinapis alba
  • Achillea millefolium
  • Fagopyrum esculentum