Genetic improvement of spinosad resistance in the biocontrol agent Orius laevigatus

Abstract

Augmentative biological control has experienced a remarkable success, particularly in protected crops. Yet integrated pest management (IPM) still requires corrective treatments to manage some pests, which may result in detrimental effects on biological control agents (BCAs). Hence, the choice of selective pesticides is crucial for an effective pest management. A complementary approach is the genetic improvement of BCAs resistant to some key pesticides, allowing their joint use in IPM. The predator Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) is widely introduced in protected crops to supress thrips and other small pests. Spinosad is a naturally derived biopesticide and a key compound in both conventional and organic crops. However, spinosad has been reported as slightly to moderately harmful to O. laevigatus. Here we explored and exploited the intra-specific variation in spinosad susceptibility in wild and commercial populations of O. laevigatus to select a spinosad-resistant strain. We found a 48.8-fold variation in susceptibility to spinosad among 35 populations, obtaining a lethal concentration (LC50) of 166.3 mg l−1 for the baseline. A spinosad-resistant strain (SPI38) was successfully obtained (LC50 = 2110.0 mg l−1). The resistance was stable for ten generations without selection pressure and was expressed in all life stages, particularly from the 3rd nymphal instar to adult. SPI38 showed cross-resistance to spinetoram and inhibitors of the detoxification enzymes were not able to restore susceptibility, which suggest a target-site resistance mechanism. The resistance achieved may be sufficient to allow survival of adults and nymphs of O. laevigatus exposed to field applications of spinosad across the cropping season.

This is a preview of subscription content, access via your institution.

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on request.

References

  1. Abbas N, Mansoor MM, Shad SA, Pathan AK, Waheed A, Ejaz M, Razaq M, Zulfiqar MA (2014) Fitness cost and realized heritability of resistance to spinosad in Chrysoperla carnea (Neuroptera: Chrysopidae). Bull Entomol Res 104:707–715

    CAS  PubMed  Article  Google Scholar 

  2. Abbott SW (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Article  Google Scholar 

  3. Agrobio (2021). Biological pest control and natural pollination—Side effects. https://www.agrobio.es/information/side-effects/?lang=en. Accessed 19 January 2021

  4. Angeli G, Baldessari M, Maines R, Duso C (2005) Side-effects of pesticides on the predatory bug Orius laevigatus (Heteroptera: Anthocoridae) in the laboratory. Biocontrol Sci Techn 15:745–754

    Article  Google Scholar 

  5. Balanza V, Mendoza JE, Bielza P (2019) Variation in susceptibility and selection for resistance to imidacloprid and thiamethoxam in Mediterranean populations of Orius laevigatus. Entomol Exp Appl 167:626–635

    CAS  Google Scholar 

  6. Balanza V, Mendoza JE, Cifuentes D, Bielza P (2021) Selection for resistance to pyrethroids in the predator Orius laevigatus. Pest Manag Sci 77:2539–2546

    CAS  PubMed  Article  Google Scholar 

  7. Bielza P (2016) Insecticide resistance in natural enemies. In: Horowitz A, Ishaaya I (eds) Advances in insect control and resistance management. Springer, pp 313–339

  8. Bielza P, Quinto V, Contreras J, Torné M, Martín A, Espinosa PJ (2007) Resistance to spinosad in the western flower thrips, Frankliniella occidentalis (Pergande), in greenhouses of south-eastern Spain. Pest Manag Sci 63:682–687

    CAS  Article  Google Scholar 

  9. Bielza P, Quinto V, Grávalos C, Fernández E, Abellán J, Contreras J (2008) Stability of spinosad resistance in Frankliniella occidentalis (Pergande) under laboratory conditions. Bull Entomol Res 98:355–359

    CAS  PubMed  Article  Google Scholar 

  10. Bielza P, Fernández E, Grávalos C, Izquierdo J (2009) Testing for non-target effects of spiromesifen on Eretmocerus mundus and Orius laevigatus under greenhouse conditions. BioControl 54:229–236

    Article  Google Scholar 

  11. Bielza P, Moreno I, Belando A, Grávalos C, Izquierdo J, Nauen R (2019) Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest Manag Sci 75:45–52

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. Bielza P, Balanza V, Cifuentes D, Mendoza JE (2020) Challenges facing arthropod biological control: identifying traits for genetic improvement of predators in protected crops. Pest Manag Sci 76:3517–3526

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. Biobest (2021) Side effect manual. https://www.biobestgroup.com/en/side-effect-manual. Accessed 19 January 2021

  14. Biondi A, Desneux N, Siscaro G, Zappalà L (2012a) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87:803–812

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Biondi A, Mommaerts V, Smagghe G, Viñuela E, Zappalà L, Desneux N (2012b) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68:1523–1536

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Broughton S, Harrison J, Rahman T (2014) Effect of new and old pesticides on Orius armatus (Gross)—an Australian predator of western flower thrips, Frankliniella occidentalis (Pergande). Pest Manag Sci 70:389–397

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Campos MR, Silva TBM, Silva WM, Silva JE, Siqueira HAA (2015) Spinosyn resistance in the tomato borer Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). J Pest Sci 88:405–412

    Article  Google Scholar 

  18. Contreras J, Espinosa PJ, Quinto V, Abellán J, Grávalos C, Fernández E, Bielza P (2010) Life-stage variation in insecticide resistance of the western flower thrips (Thysanoptera: Thripidae). J Econ Entomol 103:2164–2168

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Daglı F, Bahsi ŞÜ (2009) Topical and residual toxicity of six pesticides to Orius majusculus. Phytoparasitica 37:399–405

    Article  CAS  Google Scholar 

  20. De Clercq P, Mestdagh I, Degheele D (1998) Variation in susceptibility to pyriproxyfen in four laboratory strains of Podisus maculiventris (Say)(Het., Pentatomidae). J App Entomol 122:405–408

    Article  Google Scholar 

  21. EPPO (2003) Environmental risk assessment scheme for plant protection products. Standard PP 3/9 of the European Plant Protection Organization. EPPO Bull 33:99–101

    Article  Google Scholar 

  22. Guedes RNC, Roditakis E, Campos MR, Haddi K, Bielza P, Siqueira HAA, Tsagkarakou A, Vontas J, Nauen R (2019) Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J Pest Sci 92:1329–1342

    Article  Google Scholar 

  23. Guillem-Amat A, Sánchez L, López-Errasquín E, Ureña E, Hernández-Crespo P, Ortego F (2020) Field detection and predicted evolution of spinosad resistance in Ceratitis capitata. Pest Manag Sci 76:3702–3710

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Guillén J, Bielza P (2013) Thiamethoxam acts as a target-site synergist of spinosad in resistant strains of Frankliniella occidentalis. Pest Manag Sci 69:188–194

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. Herrick NJ, Cloyd RA (2017) Direct and indirect effects of pesticides on the insidious flower bug (Hemiptera: Anthocoridae) under laboratory conditions. J Econ Entomol 110:931–940

    PubMed  Article  PubMed Central  Google Scholar 

  26. Hopper KR, Roush RT, Powell W (1993) Management of genetics of biological-control introductions. Ann Rev Entomol 38:27–51

    Article  Google Scholar 

  27. Hoy MA (1986) Use of genetic improvement in biological control. Agric Ecosyst Environ 15:109–119

    Article  Google Scholar 

  28. IOBC-WPRS (2021a) Pesticides and beneficial organisms. https://www.iobc-wprs.org/expert_groups/01_wg_beneficial_organisms.html. Accessed 19 January 2021

  29. IOBC-WPRS (2021b) IOBC-WPRS pesticide side effect database. https://www.iobc-wprs.org/ip_integrated_production/Pesticide_Side_Effect_Database.html. Accessed 19 January 2021

  30. IRAC (2021) The IRAC mode of action classification online. https://irac-online.org/modes-of-action/. Accessed 19 January 2021

  31. Jones T, Scott-Dupree C, Harris R, Shipp L, Harris B (2005) The efficacy of spinosad against the western flower thrips, Frankliniella occidentalis, and its impact on associated biological control agents on greenhouse cucumbers in southern Ontario. Pest Manag Sci 61:179–185

    CAS  PubMed  Article  Google Scholar 

  32. Jones CM, Daniels M, Andrews M, Slater R, Lind RJ, Gorman K, Williamson MS, Denholm I (2011) Age-specific expression of a P450 monooxygenase (CYP6CM1) correlates with neonicotinoid resistance in Bemisia tabaci. Pesticide Biochem Physiol 101:53–58

    CAS  Article  Google Scholar 

  33. Kim SY, Ahn HG, Ha PJ, Lim UT, Lee JH (2018) Toxicities of 26 pesticides against 10 biological control species. J Asia-Pacific Entomol 21:1–8

    Article  Google Scholar 

  34. Koppert (2021) Side effects. https://sideeffects.koppert.com/?L=28. Accessed 19 January 2021

  35. Lima Neto JE, Amaral MHP, Siqueira HAA, Barros R, Silva PAF (2016) Resistance monitoring of Plutella xylostella (L.) (Lepidoptera: Plutellidae) to risk-reduced insecticides and cross resistance to spinetoram. Phytoparasitica 44:631–640

    CAS  Article  Google Scholar 

  36. Mandour NS (2009) Influence of spinosad on immature and adult stages of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). BioControl 54:93–102

    CAS  Article  Google Scholar 

  37. Mendoza JE, Balanza V, Cifuentes D, Bielza P (2020) Selection for larger body size in Orius laevigatus: intraspecific variability and effects on reproductive parameters. Biol Control 148:104310

    CAS  Article  Google Scholar 

  38. Mendoza JE, Balanza V, Cifuentes D, Bielza P (2021) Genetic improvement of Orius laevigatus for better fitness feeding on pollen. J Pest Sci. https://doi.org/10.1007/s10340-020-01291-x

    Article  Google Scholar 

  39. Miles M (2006) The effects of spinosad in beneficial insects and mites used in integrated pest management systems in greenhouses. IOBC/WPRS Bulletin 29:53–59

    Google Scholar 

  40. Nauen R, Bielza P, Denholm I, Gorman K (2008) Age-specific expression of resistance to a neonicotinoid insecticide in the whitefly Bemisia tabaci. Pest Manag Sci 64:1106–1110

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Richardson EB, Troczka BJ, Gutbrod O, Davies TGE, Nauen R (2020) Diamide resistance: 10 years of lessons from lepidopteran pests. J Pest Sci 93:911–928

    Article  Google Scholar 

  42. Robertson JL, Savin NE, Russell RM, Preisler HK (2007) Bioassays with arthropods. CRC Press, Boca Raton, USA

    Book  Google Scholar 

  43. Roditakis E, Vasakis E, García-Vidal L, Martínez-Aguirre MR, Rison JL, Haxaire-Lutun MO, Nauen R, Tsagkarakou A, Bielza P (2018) A four-year survey on insecticide resistance and likelihood of chemical control failure for tomato leaf miner Tuta absoluta in the European/Asian region. J Pest Sci 91:421–435

    Article  Google Scholar 

  44. Roe RM, Young HP, Iwasa T, Wyss CF, Stumpf CF, Sparks TC, Watson GB, Sheets JJ, Thompson GD (2010) Mechanism of resistance to spinosyn in the tobacco budworm Heliothis virescens. Pesticide Biochem Physiology 96:8–13

    CAS  Article  Google Scholar 

  45. Roush RT, Hoy CW, Ferro DN, Tingey WN (1990) Insecticide resistance in the Colorado potato beetle (Coleoptera: Chrysomelidae): influence of crop rotation and insecticide use. J Econ Entomol 83:315–319

    CAS  Article  Google Scholar 

  46. Russell RM, Robertson JL, Savin NE (1977) Polo: a new computer program for probit analysis. Bull Entomol Soc Am 23:209–255

    Google Scholar 

  47. Sánchez JA, Alcázar A, Lacasa A, Llamas A, Bielza P, Albajes R, Sekeroglu E (2000) Integrated pest management strategies in sweet pepper plastic houses in the Southeast of Spain. Bulletin IOBC/WPRS 23:21–30

    Google Scholar 

  48. Shono T, Scott JG (2003) Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome I. Pesticide Biochem Physiology 75:1–7

    CAS  Article  Google Scholar 

  49. Sterk G, Hassan SA, Baillod M, Bakker F, Bigler F, Blümel S, Bogenschütz H, Boller E, Bromand B, Brun J, Calis JNM, Coremans-Pelseneer J, Duso C, Garrido A, Grove A, Heimbach U, Hokkanen H, Jacas J, Lewis G, Moreth L, Polgar L, Rovesti L, Samsoe-Peterson L, Sauphanor B, Schaub L, Stäubli A, Tuset JJ, Vainio A, van de Veire M, Viggiani G, Viñuela E, Vogt H (1999) Results of seventh join pesticides testing programme carried out by the IOCB/WPRS Working Group Pesticides and Beneficial Organisms. BioControl 44:99–117

    CAS  Article  Google Scholar 

  50. Studebaker GE, Kring TJ (2003) Effects of insecticides on Orius insidiosus (Hemiptera: Anthocoridae), measured by field, greenhouse and Petri dish bioassays. Florida Entomol 86:178–185

    CAS  Article  Google Scholar 

  51. Thompson D, Dutton R, Sparks TC (2000) Spinosad, a case study: an example from a natural products discovery programme. Pest Manag Sci 56:696–702

    CAS  Article  Google Scholar 

  52. Torres JB (2012) Insecticide resistance in natural enemies-seeking for integration of chemical and biological controls. J Biofert Biopest 3:1–3

    Article  Google Scholar 

  53. van de Veire M, Tirry L (2003) Side effects of pesticides on four species of beneficials used in IPM in glasshouse vegetable crops: ‘worst case’ laboratory tests. IOBC/WPRS Bulletin 26:41–50

    Google Scholar 

  54. van de Veire M, Klein M, Tirry L (2002a) Residual activity of abamectin and spinosad against the predatory bug Orius laevigatus. Phytoparasitica 30:525–528

    Article  Google Scholar 

  55. van de Veire M, Sterk G, van der Staaij M, Ramakers PMJ, Tirry L (2002b) Sequential testing scheme for the assessment of the side-effects of plant protection products on the predatory bug Orius laevigatus. BioControl 47:101–113

    Article  Google Scholar 

  56. van Lenteren JC, Alomar O, Ravensberg WJ, Urbaneja A (2020) Biological control agents for control of pests in greenhouses. In: Gullino M, Albajes R, Nicot P (eds) Integrated pest and disease management in greenhouse crops. Plant pathology in the 21st century, vol 9. Springer, Cham, pp 409–439

    Chapter  Google Scholar 

  57. Wang W, Mo J, Cheng J, Zhung P, Tang Z (2006) Selection and characterization of spinosad resistance in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Pesticide Biochem Physiology 84:180–187

    CAS  Article  Google Scholar 

  58. Wang D, Qiu X, Ren X, Niu F, Wang K (2009) Resistance selection and biochemical characterization of spinosad resistance in Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Pesticide Biochem Physiology 95:90–94

    CAS  Article  Google Scholar 

  59. Williams T, Valle J, Viñuela E (2003) Is the naturally derived insecticide spinosad compatible with insect natural enemies? Biocontrol Sci Techn 13:459–475

    Article  Google Scholar 

  60. Zhao JZ, Li YX, Collins HL, Gusukuma-Minuto L, Mau RFL, Thompson GD, Shelton AM (2002) Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad. J Econ Entomol 95:430–436

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge anonymous referees for reviews and comments on the manuscript. This research has been supported by the Spanish Ministry of Science, Innovation and Universities (AGL2017-89600-R) and by the European FEDER funds. José Enrique Mendoza holds a grant from the MSIU (FPU14/02932).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pablo Bielza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Josep Anton Jaques Miret.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Balanza, V., Mendoza, J.E., Cifuentes, D. et al. Genetic improvement of spinosad resistance in the biocontrol agent Orius laevigatus. BioControl (2021). https://doi.org/10.1007/s10526-021-10093-8

Download citation

Keywords

  • Insecticide resistance
  • Natural enemy
  • Genetic variability
  • Selective breeding
  • Hemiptera
  • Anthocoridae