Skip to main content

Advertisement

Log in

Tracking the movement of Nesidiocoris tenuis among banker plants and crops in a tomato greenhouse by DNA markers of host plants

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The zoophytophagous predator, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae), is an important biological control agent. To maintain this insect, several non-crop host plants are used as banker plants in greenhouse crop systems. To optimize the efficiency of the predator-banker plant interaction, it is necessary to investigate how individual predators move between banker plants and crops. However, the movement is difficult to quantify under field conditions. Therefore, we investigated the movement of N. tenuis between tomato plants (Solanum lycopersicum L., Solanales: Solanaceae) and three banker plants (Cleome hassleriana Chod., Brassicales: Cleomaceae; Sesamum indicum L., Lamiales: Pedaliaceae; and Verbena × hybrida Voss, Lamiales: Verbenaceae) in a greenhouse by conducting PCR using plant-species-specific primers. Laboratory analysis results showed that our molecular method could detect N. tenuis activity within a relatively short time (≤ 24 h). In addition, N. tenuis predation on a pest species was unlikely to result in false detection of plant DNA in the pest (suggesting that N. tenuis had been on the plants). Multiple plant species were detected in adult insects collected from the greenhouse plants, indicating that N. tenuis frequently moved across the mentioned plant species. The movement patterns of N. tenuis between plant species varied substantially based on the plant species from which they were collected, which suggested each of the plant species had different functions for N. tenuis. Our findings revealed that planting multiple host plants would stabilize the N. tenuis population in biological control programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Aebi A, Brown PMJ, de Clercq P, Hautier L, Howe A, Ingels B, Ravn HP, Sloggett JJ, Zindel R, Thomas A (2011) Detecting arthropod intraguild predation in the field. BioControl 56:429–440

    Article  Google Scholar 

  • Balzan MV (2017) Flowering banker plants for the delivery of multiple agroecosystem services. Arthropod Plant Interact 11:743–754

    Article  Google Scholar 

  • Biondi A, Zappalà L, Di Mauro A, Tropea Garzia G, Russo A, Desneux N, Siscaro G (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? BioControl 61:79–90

    Article  Google Scholar 

  • Bouagga S, Urbaneja A, Rambla JL, Flors V, Granell A, Jaques JA, Pérez-Hedo M (2018) Zoophytophagous mirids provide pest control by inducing direct defences, antixenosis and attraction to parasitoids in sweet pepper plants. Pest Manag Sci 74:1286–1296

    Article  CAS  PubMed  Google Scholar 

  • Calvo FJ, Bolckmans K, Belda JE (2012) Release rate for a pre-plant application of Nesidiocoris tenuis for Bemisia tabaci control in tomato. BioControl 57:809–817

    Article  Google Scholar 

  • Cano M, Vila E, Janssen D, Bretones G, Salvador E, Lara L, Tellez MM (2009) Selection of refuges for Nesidiocoris tenuis (Het.: Miridae) and Orius laevigatus (Het.: Anthocoridae): Virus reservoir risk assessment. IOBC/WPRS Bull 49:281–286

    Google Scholar 

  • Castañé C, Arnó J, Gabarra R, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59:22–29

    Article  Google Scholar 

  • CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci 106:12794–12797

    Article  PubMed Central  Google Scholar 

  • Cooper WR, Horton DR, Unruh TR, Garczynski SF (2016) Gut content analysis of a phloem-feeding insect, Bactericera cockerelli (Hemiptera: Triozidae). Environ Entomol 45:938–944

    Article  CAS  PubMed  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Frank SD (2010) Biological control of arthropod pests using banker plant systems: Past progress and future directions. Biol Control 52:8–16

    Article  Google Scholar 

  • Greenstone MH, Weber DC, Coudron TC, Payton ME (2011) Unnecessary roughness? Testing the hypothesis that predators destined for molecular gut-content analysis must be hand-collected to avoid cross-contamination. Mol Ecol Resour 11:286–293

    Article  PubMed  Google Scholar 

  • Greenstone MH, Weber DC, Coudron TA, Payton ME, Hu JS (2012) Removing external DNA contamination from arthropod predators destined for molecular gut-content analysis. Mol Ecol Resour 12:464–469

    Article  PubMed  Google Scholar 

  • Harwood JD, Desneux N, Yoo HJS, Rowley DL, Greenstone MH, Obrycki JJ, O’Neil RJ (2007) Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: a molecular approach. Mol Ecol 16:4390–4400

    Article  CAS  PubMed  Google Scholar 

  • Hayashi M, Abe J, Owashi Y, Miura K (2020) Estimation of movement from insectary plants to crop plants in Orius bugs (Heteroptera: Anthocoridae) by molecular gut content analysis. Appl Entomol Zool 55:361–365

    Article  CAS  Google Scholar 

  • Hereward JP, Walter GH (2012) Molecular interrogation of the feeding behaviour of field captured individual insects for interpretation of multiple host plant use. PLoS ONE 7(9):e44435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinomoto N, Abe J, Nagasaka K (2017) Control of thrips in cucumber by Nesidiocoris tenuis-banker plant system. IOBC/WPRS Bull 124:207–213

    Google Scholar 

  • Huang N, Enkegaard A, Osborne LS, Ramakers PMJ, Messelink GJ, Pijnakker J, Murphy G (2011) The banker plant method in biological control. CRC Crit Rev Plant Sci 30:259–278

    Article  Google Scholar 

  • Ingegno BL, Pansa MG, Tavella L (2011) Plant preference in the zoophytophagous generalist predator Macrolophus pygmaeus (Heteroptera: Miridae). Biol Control 58:174–181

    Article  Google Scholar 

  • Kalendar R, Lee D, Schulman AH (2011) Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics 98:137–144

    Article  CAS  PubMed  Google Scholar 

  • King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963

    Article  CAS  PubMed  Google Scholar 

  • King RA, Davey JS, Bell JR, Read DS, Bohan DA, Symondson WOC (2012) Suction sampling as a significant source of error in molecular analysis of predator diets. Bull Entomol Res 102:261–266

    Article  CAS  PubMed  Google Scholar 

  • Kuusk AK, Cassel-Lundhagen A, Kvarnheden A, Ekbom B (2008) Tracking aphid predation by lycosid spiders in spring-sown cereals using PCR-based gut-content analysis. Basic Appl Ecol 9:718–725

    Article  CAS  Google Scholar 

  • Lins JC, van Loon JJA, Bueno VHP, Lucas-Barbosa D, Dicke M, van Lenteren JC (2014) Response of the zoophytophagous predators Macrolophus pygmaeus and Nesidiocoris tenuis to volatiles of uninfested plants and to plants infested by prey or conspecifics. BioControl 59:707–718

    Article  Google Scholar 

  • Messelink GJ, Bennison J, Alomar O, Ingegno BL, Tavella L, Shipp L, Palevsky E, Wäckers FL (2014) Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects. BioControl 59:377–393

    Article  Google Scholar 

  • Nakaishi K, Fukui Y, Arakawa R (2011) Reproduction of Nesidiocoris tenuis (Reuter) on sesame. Japanese J Appl Entomol Zool 55:199–205 (in Japanese with English summary, figures, and tables)

  • Nakano R, Tsuchida Y, Doi M, Ishikawa R, Tatara A, Amano Y, Muramatsu Y (2016) Control of Bemisia tabaci (Gennadius) on tomato in greenhouses by a combination of Nesidiocoris tenuis (Reuter) and banker plants. Annu Rep Kansai Plant Prot Soc 58:65–72 (in Japanese with English summary, figures, and tables)

  • Nakano R, Morita T, Okamoto Y, Fujiwara A, Yamanaka T, Adachi-Hagimori T (2021) Cleome hassleriana plants fully support the development and reproduction of Nesidiocoris tenuis. BioControl. https://doi.org/10.1007/s10526-021-10079-6

    Article  Google Scholar 

  • Naselli M, Zappalà L, Gugliuzzo A, Tropea Garzia G, Biondi A, Rapisarda C, Cincotta F, Condurso C, Verzera A, Siscaro G (2017) Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants. Arthropod Plant Interact 11:121–131

    Article  Google Scholar 

  • Navarro SP, Jurado-Rivera JA, Gómez-Zurita J, Lyal CHC, Vogler AP (2010) DNA profiling of host-herbivore interactions in tropical forests. Ecol Entomol 35:18–32

    Article  Google Scholar 

  • Oveja MF, Arnó J, Gabarra R (2012) Effect of supplemental food on the fitness of four omnivorous predator species. IOBC/WPRS Bull 80:97–101

    Google Scholar 

  • Parolin P, Bresch C, Desneux N, Brun R, Bout A, Boll R, Poncet C (2012a) Secondary plants used in biological control: A review. Int J Pest Manag 58:91–100

    Article  Google Scholar 

  • Parolin P, Bresch C, Poncet C, Desneux N (2012b) Functional characteristics of secondary plants for increased pest management. Int J Pest Manag 58:369–377

    Article  Google Scholar 

  • Parolin P, Bresch C, Poncet C, Suay-Cortez R, van Oudenhove L (2015) Testing basil as banker plant in IPM greenhouse tomato crops. Int J Pest Manag 61:235–242

    Article  Google Scholar 

  • Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21

    Article  Google Scholar 

  • Pérez-Hedo M, Urbaneja A (2016) The zoophytophagous predator Nesidiocoris tenuis: a successful but controversial biocontrol agent in tomato crops. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer International Publishing, Cham, pp 121–138

    Chapter  Google Scholar 

  • Pérez-Hedo M, Suay R, Alonso M, Ruocco M, Giorgini M, Poncet C, Urbaneja A (2017) Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Prot 97:119–127

    Article  Google Scholar 

  • Pérez-Hedo M, Rambla JL, Granell A, Urbaneja A (2018) Biological activity and specificity of Miridae-induced plant volatiles. BioControl 63:203–213

    Article  CAS  Google Scholar 

  • Pérez-Hedo M, Riahi C, Urbaneja A (2021) Use of zoophytophagous mirid bugs in horticultural crops: current challenges and future perspectives. Pest Manag Sci 77:33–42

    Article  CAS  PubMed  Google Scholar 

  • Pumariño L, Alomar O, Agustí N (2011) Development of specific ITS markers for plant DNA identification within herbivorous insects. Bull Entomol Res 101:271–276

    Article  PubMed  CAS  Google Scholar 

  • Rim H, Uefune M, Ozawa R, Takabayashi J (2015) Olfactory response of the omnivorous mirid bug Nesidiocoris tenuis to eggplants infested by prey: Specificity in prey developmental stages and prey species. Biol Control 91:47–54

    Article  Google Scholar 

  • Sanchez JA, Gillespie DR, McGregor RR (2003a) The effects of mullein plants (Verbascum thapsus) on the population dynamics of Dicyphus hesperus (Heteroptera: Miridae) in tomato greenhouses. Biol Control 28:313–319

    Article  Google Scholar 

  • Sanchez JA, Martinez-Cascales JI, Lacasa A (2003b) Abundance and wild host plants of predator mirids (Heteroptera: Miridae) in horticultural crops in the Southeast of Spain. IOBC/WPRS Bull 26:147–151

    Google Scholar 

  • Sanchez JA, Gillespie DR, McGregor RR (2004) Plant preference in relation to life history traits in the zoophytophagous predator Dicyphus hesperus. Entomol Exp Appl 112:7–19

    Article  Google Scholar 

  • Sheppard SK, Harwood JD (2005) Advances in molecular ecology: tracking trophic links through predator-prey food-webs. Funct Ecol 19:751–762

    Article  Google Scholar 

  • Shimomoto M, Nakaishi K (2017) Supply system of the indigenous predator bug, Nesidiocoris tenuis (Reuter) by relaying among greenhouses in Kochi Prefecture. Plant Prot 71:406–410 (in Japanese)

    Google Scholar 

  • Sint D, Raso L, Kaufmann R, Traugott M (2011) Optimizing methods for PCR-based analysis of predation. Mol Ecol Resour 11:795–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomine E, Jeavons E, Rusch A, Bearez P, Desneux N (2020) Effect of crop diversity on predation activity and population dynamics of the mirid predator Nesidiocoris tenuis. J Pest Sci 93:1255–1265

    Article  Google Scholar 

  • Toda S, Komazaki S (2002) Identification of thrips species (Thysanoptera: Thripidae) on Japanese fruit trees by polymerase chain reaction and restriction fragment length polymorphism of the ribosomal ITS2 region. Bull Entomol Res 92:359–363

    Article  CAS  PubMed  Google Scholar 

  • Tsugane T, Oida H, Kubo C, Shimizu K (2007) Development of a multiplex PCR assay for identification of Bemisia tabaci biotype B, biotype Q and Trialeurodes vaporariorum. Annu Rep Kanto-Tosan Plant Prot Soc 54:159–164 (in Japanese)

    Google Scholar 

  • Urbaneja A, Tapia G, Stansly P (2005) Influence of host plant and prey availability on developmental time and survivorship of Nesidiocoris tenuis (Het.: Miridae). Biocontrol Sci Technol 15:513–518

    Article  Google Scholar 

  • Urbaneja A, González-Cabrera J, Arnó J, Gabarra R (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag Sci 68:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Urbaneja-Bernat P, Bru P, González-Cabrera J, Urbaneja A, Tena A (2019) Reduced phytophagy in sugar-provisioned mirids. J Pest Sci 92:1139–1148

    Article  Google Scholar 

  • Walker GP, Perring TM, Freeman TP (2010) Life history, functional anatomy, feeding and mating behavior. In: Stansly PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 109–160

    Google Scholar 

  • Wallinger C, Sint D, Baier F, Schmid C, Mayer R, Traugott M (2015) Detection of seed DNA in regurgitates of granivorous carabid beetles. Bull Entomol Res 105:728–735

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Bao WF, Yang F, Xu B, Yang YZ (2017) The specific host plant DNA detection suggests a potential migration of Apolygus lucorum from cotton to mungbean fields. PLoS ONE 12(6):e0177789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yano E, Nakauchi M, Watanabe T, Watanabe H, Hosaka S, Nishimori S, Miura S, Kandori I, Hinomoto N (2020) Life history traits of Nesidiocoris tenuis on Bemisia tabaci and Thrips palmi. BioControl 65:155–164

    Article  CAS  Google Scholar 

  • Zhao Y, Chen Y (2014) Data mining applications with R. Academic Press, Amsterdam

    Google Scholar 

Download references

Acknowledgements

We thank Dr. T. Tezuka and S. Kohara (Agri-Soken Inc.) for providing Nesidiocoris tenuis colonies, and Dr. K. Kubota (NARO), K. Nakai (Kagawa Prefectural Agricultural Experiment Station), and D. Nakajima for providing arthropod or plant samples. We thank Dr. T. Mitsunaga (NARO) for advice on statistical analyses. This work was supported by Cabinet Office, Government of Japan, Cross-Ministerial Strategic Innovation Promotion Program (SIP), “Technologies for creating next-generation agriculture, forestry, and fisheries” (funding agency: Bio-oriented Technology Research Advancement Institution, NARO).

Author information

Authors and Affiliations

Authors

Contributions

Both authors conceived and designed the research and conducted the experiments. RN analyzed the data and wrote the first draft of the manuscript. NH commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Ryohei Nakano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals (vertebrates) performed by either of the authors.

Additional information

Handling Editor: Marta Montserrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, R., Hinomoto, N. Tracking the movement of Nesidiocoris tenuis among banker plants and crops in a tomato greenhouse by DNA markers of host plants. BioControl 66, 659–671 (2021). https://doi.org/10.1007/s10526-021-10085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-021-10085-8

Keywords

Profiles

  1. Norihide Hinomoto