Bacillus velezensis RC 218 as a biocontrol agent against Fusarium graminearum: effect on penetration, growth and TRI5 expression in wheat spikes

Abstract

Fusarium head blight (FHB) is one of the main fungal diseases affecting bread (Triticum aestivum L.) and durum wheat (Triticum durum L.) crops worldwide, resulting not only in important economic losses due to reduced grain yield and quality, but also in grain safety due to mycotoxins contamination, mainly deoxynivalenol (DON). TRI5 gene catalyzes the first step in DON biosynthesis and its expression is used as an indicator for trichothecene synthesis induction. In Argentina, FHB is caused by Fusarium graminearum sensu stricto when humid weather and warm temperature conditions predominate around flowering. Commonly used strategies to manage FHB are not highly efficient if individually applied and under this scenario. Biological control appears as a viable approach than can be included in an integrated FHB management. Previous studies carried out by our research group proved the biocontrol efficacy of Bacillus velezensis RC 218 in reducing FHB in bread and durum wheat, under greenhouse and field conditions. In this study, we analyzed F. graminearum sensu stricto penetration, growth and TRI5 gene expression when B. velezensis RC 218 was applied on wheat spikes. Spike tissue sections were obtained and observed under different microscopic techniques. We observed that the biocontrol agent (BCA) was able to reduce F. graminearum infection and trichothecene accumulation in bread wheat susceptible cultivar BioInta1005. Data on tissue analysis suggest B. velezensis RC 218 induced cell wall thickening in the host tissues immediately surrounding the F. graminearum infection site, preventing cell plasmolysis and collapse.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Agrios G (2005) Plant pathology, 5th edn. Academic Press, San Diego

    Google Scholar 

  2. Bai GH, Desjardins AE, Plattner R (2002) Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153:91–98

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. Behari A (2018) Exploring Fusarium head blight disease development and biological control. Pennsylvania State University, United States

    Google Scholar 

  4. Benhamou N, Kloepper JW, Quadt-Hallman A, Tuzun S (1996) Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112:919–929

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    CAS  Article  Google Scholar 

  6. Boenisch MJ, Schäfer W (2011) Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol 11:110

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Bolanos-Carriel C, Wegulo SN, Baenziger PS, Eskridge KM, Funnell-Harris D, Mcmaster N, Schmale DG, Hallen-Adams HE (2020) Tri5 gene expression analysis during postharvest storage of wheat grain from field plots treated with a triazole and a strobirulin fungicide. Can J Plant Pathol

  8. Boutigny AL, Richard-Forget F, Barreau C (2008) Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur J Plant Pathol 121(4):411–423

    CAS  Article  Google Scholar 

  9. Brown NA, Urban M, van de Meene AML, Hammond-Kosack KE (2010) The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biol 114:555

    PubMed  Article  PubMed Central  Google Scholar 

  10. Bhuiyan NH, Selvaraj G, Wei Y, King J (2009) Role of lignification in plant defense. Plant Signal Behav 4(2):158–159

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Chen Y, Zhou MG (2009) Sexual recombination of carbendazim resistance in Fusarium graminearum under field conditions. Pest Manag Sci 65:98–403

    Google Scholar 

  12. Cuzick A, Urban M, Hammond Kosack K (2008) Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue. New Phytol 177(4):990–1000

    PubMed  Article  PubMed Central  Google Scholar 

  13. De Luna L, Bujold I, Carisse O, Paulitz TC (2002) Ascospore gradients of Gibberella zeae from overwintered inoculum in wheat fields. Can J Plant Pathol 24:457–464

    Article  Google Scholar 

  14. Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 57:595–604

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Dunlap CA, Bowman MJ, Schisler DA (2013) Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: a biocontrol antagonist of Fusarium head blight. Biol Control 64:166–175

    CAS  Article  Google Scholar 

  16. Gale LR, Chen LF, Hernick CA, Takamura K, Kistler HC (2002) Population analysis of Fusarium graminearum from wheat fields in Eastern China. Phytopathology 92:1315–1322

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Gilbert J, Haber S (2013) Overview of some recent research developments in Fusarium head blight of wheat. Can J Plant Pathol 35:149–174

    CAS  Article  Google Scholar 

  18. Guo H, Ji J, Wang J, Sun X (2020) Deoxynivalenol: masked forms, fate during food processing, and potential biological remedies. Compr Rev Food Sci Food Saf 19:895–926

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Hallen-Adams HE, Wenner N, Kuldau GA, Trail F (2011) Deoxynivalenol biosynthesis-related gene expression during wheat kernel colonization by Fusarium graminearum. Phytopathology 101:1091–1096

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. Ilgen P, Hadeler B, Maier FJ, Schäfer W (2009) Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Mol Plant Microbe Interact 22:899–908

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Khan M, Doohan F (2009) Bacterium-mediated control of Fusarium head blight disease of wheat and barley and associated mycotoxin contamination of grain. Biol Control 48:42–47

    Article  Google Scholar 

  22. Khan N, Martínez-Hidalgo P, Ice TA, Maymon M, Humm EA, Nejat N, Sanders ER, Kaplan D, Hirsch AM (2018) Antifungal activity of Bacillus species against Fusarium and analysis of the potential mechanisms used in biocontrol. Front Microbiol 9:2363

    PubMed  PubMed Central  Article  Google Scholar 

  23. Lahlali R, Kumar S, Wang L, Forseille L, Sylvain N, Korbas M, Muir D, Swerhone G, Lawrence JR, Fobert PR, Peng G, Karunakaran C (2016) Cell wall biomolecular composition plays a potential role in the host type II resistance to Fusarium head blight in wheat. Front Microbiol 7:910

    PubMed  PubMed Central  Article  Google Scholar 

  24. Li Y, Chen D, Luo S, Zhu Y, Jia X, Duan Y, Zhou M (2019) Intron-mediated regulation of β-tubulin genes expression affects the sensitivity to carbendazim in Fusarium graminearum. Curr Genet 65:1057–1069

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Liu D, Li K, Hu J, Wang W, Liu X (2019) Biocontrol and action mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in soybean Phytophthora blight. Int J Mol Sci 20(12):2908

    CAS  PubMed Central  Article  Google Scholar 

  26. Maier FJ, Miedaner T, Hadeler B, Felk A, Salomon S, Lemmens M, Kassner H, SchÄFer W (2006) Involvement of trichothecenes in fusarioses of wheat, barley and maize evaluated by gene disruption of the trichodiene synthase (Tri5) gene in three field isolates of different chemotype and virulence. Mol Plant Pathol 7:449–461

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Maldonado-Ramirez SL, Schmale DG, Shields EJ, Bergstrom GC (2005) The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agric For Meteorol 132:20–27

    Article  Google Scholar 

  28. Martin C, Schöneberg T, Vogelgsang S, Vincenti J, Bertossa M, Mauch-mani B, Mascher F (2017) Factors of wheat grain resistance to Fusarium head blight. Phytopathol Mediterr 56:154–166

    CAS  Google Scholar 

  29. Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V, Vannacci G (2012) Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology 158:98–106

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Mesterházy Á, Bartók T, Mirocha CG, Komoroczy R (1999) Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed 118:97–110

    Article  Google Scholar 

  31. McMullen M, Bergstrom G, De Wolf E, Dill-Macky R, Hershman D, Shaner G, van Sanford D (2012) A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis 96:1712–1728

    PubMed  Article  PubMed Central  Google Scholar 

  32. Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    CAS  Article  Google Scholar 

  33. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Osborne LE, Stein JM (2007) Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol 119:103–108

    PubMed  Article  PubMed Central  Google Scholar 

  35. Palazzini JM, Ramirez ML, Torres AM, Chulze SN (2007) Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat. Crop Prot 26:1702–1710

    CAS  Article  Google Scholar 

  36. Palazzini JM, Ramirez ML, Alberione EJ, Torres AM, Chulze SN (2009) Osmotic stress adaptation, compatible solutes accumulation and biocontrol efficacy of two potential biocontrol agents on Fusarium head blight in wheat. Biol Control 51:370–376

    Article  Google Scholar 

  37. Palazzini JM, Groenenboom-de Haas BH, Torres AM, Köhl J, Chulze SN (2013) Biocontrol and population dynamics of Fusarium spp. on wheat stubble in Argentina. Plant Pathol 62:859–866

    CAS  Article  Google Scholar 

  38. Palazzini J, Fumero V, Yerkovich N, Barros G, Cuniberti M, Chulze S (2015) Correlation between and deoxynivalenol during the 2012/13 wheat Fusarium head blight outbreak in Argentina. Cereal Res Commun 43(4):627–637

    CAS  Article  Google Scholar 

  39. Palazzini JM, Alberione E, Torres A, Donat C, Köhl J, Chulze S (2016a) Biological control of Fusarium graminearum sensu stricto, causal agent of Fusarium head blight of wheat, using formulated antagonists under field conditions in Argentina. Biol Control 94:56–61

    Article  Google Scholar 

  40. Palazzini JM, Dunlap CA, Bowman MJ, Chulze SN (2016b) Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: genome sequencing and secondary metabolite cluster profiles. Microbiol Res 192:30–36

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Palazzini JM, Roncallo P, Cantoro R, Chiotta M, Yerkovich N, Palacios S, Echenique V, Torres A, Ramirez M, Karlovsky P (2018a) Biocontrol of Fusarium graminearum sensu stricto, reduction of deoxynivalenol accumulation and phytohormone induction by two selected antagonists. Toxins 10(2):88

    PubMed Central  Article  CAS  Google Scholar 

  42. Palazzini JM, Torres AM, Chulze SN (2018b) Tolerance of triazole-based fungicides by biocontrol agents used to control Fusarium head blight in wheat in Argentina. Lett Appl Microbiol 66:434–438

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. Pestka JJ (2010) Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 84:663–679

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP (2000) Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant Microbe Interact 13:159–169

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. Proctor RH (1995) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Pugh GW, Johann H, Dickson JG (1933) Factors affecting infection of wheat heads by Gibberella saubiuetii. J Agric Res 46:771–797

    Google Scholar 

  47. Ramirez ML, Chulze S, Magan N (2004) Impact of environmental factors and fungicides on growth and deoxynivalenol production by Fusarium graminearum isolates from Argentinian wheat. Crop Prot 23:117–125

    CAS  Article  Google Scholar 

  48. Rawat N, Pumphrey MO, Liu S, Zhang X, Tiwari VK, Ando K, Trick HN, Bockus WW, Akhunov E, Anderson JA, Gill BS (2016) Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet 48:1576–1580

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. Ribichich KF, Lopez SE, Vegetti AC (2000) Histopathological spikelet changes produced by Fusarium graminearum in susceptible and resistant wheat cultivars. Plant Dis 84:794–802

    PubMed  Article  PubMed Central  Google Scholar 

  50. Sarrocco S, Matarese F, Moncini L, Pachetti G, Ritieni A, Moretti A, Vannacci G (2013) Biocontrol of Fusarium head blight by spike application of Trichoderma gamsii. J Plant Pathol S1:19–27

    Google Scholar 

  51. Schroeder H, Christensen J (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  52. Schisler DA, Core A, Boehm MJ, Horst L, Krause C, Dunlap C, Rooney A (2014) Population dynamics of the Fusarium head blight biocontrol agent Cryptococcus flavescens OH 182.9 on wheat anthers and heads. Biol Control 70:17–27

    Article  Google Scholar 

  53. Sevastos A, Kalampokis IF, Panagiotopoulou A, Pelecanou M, Aliferis KA (2018) Implication of Fusarium graminearum primary metabolism in its resistance to benzimidazole fungicides as revealed by 1H NMR metabolomics. Pestic Biochem Physiol 148:50–61

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Simpson DR, Weston GE, Turner JA, Jennings P, Nicholson P (2001) Differential control of head blight pathogens of wheat by fungicides and consequences for mycotoxin contamination of grain. Eur J Plant Pathol 107:421–431

    CAS  Article  Google Scholar 

  55. Wanjiru MW, Kang Z, Heinrich B (2002) Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads. Eur J Plant Pathol 108:803–810

    CAS  Article  Google Scholar 

  56. Wegulo SN, Baenziger PS, Hernandez Nopsa J, Bockus WW, Hallen-Adams H (2015) Management of Fusarium head blight of wheat and barley. Crop Prot 73:100–107

    CAS  Article  Google Scholar 

  57. Yerkovich N, Palazzini JM, Sulyok M, Chulze SN (2017) Trichothecene genotypes, chemotypes and zearalenone production by Fusarium graminearum species complex strains causing Fusarium head blight in Argentina during an epidemic and non-epidemic season. Trop Plant Pathol 42:190–196

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Hugo Quiroz, for help with light microscopy sample preparation, Andrea L. Cristofolini and Cecilia Sampedro for assistance with light and fluorescence microscopy respectively.

Funding

This work was supported by grants from National Agency for Scientific and Technological Promotion, Argentina (ANPCyT) PICT 2015/1253 and PICT 2017/2554.

Author information

Affiliations

Authors

Contributions

RC, JMP, NY, SNC and DJM designed the research and performed figure analysis. RC carried out the experiments. All authors contributed in data interpretation and manuscript writing.

Corresponding author

Correspondence to Renata Cantoro.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Handling Editor: Jesus Mercado Blanco.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cantoro, R., Palazzini, J.M., Yerkovich, N. et al. Bacillus velezensis RC 218 as a biocontrol agent against Fusarium graminearum: effect on penetration, growth and TRI5 expression in wheat spikes. BioControl 66, 259–270 (2021). https://doi.org/10.1007/s10526-020-10062-7

Download citation

Keywords

  • Biological control
  • Fusarium graminearum sensu stricto
  • Fusarium head blight
  • Bacillus velezensis RC218
  • Triticum aestivum
  • TRI5