Antimicrobial effect of Bacillus licheniformis HN-5 bacitracin A on rice pathogen Pantoea ananatis

Abstract

Pantoea ananatis is a plant pathogenic bacterium that severely impacts rice. In spite of its worldwide prevalence, limited studies have been conducted so far on the control of P. ananatis. Bacitracin A is a non-ribosomal peptide antibiotic with strong antibacterial activity produced by Bacillus licheniformis strain HN-5. We investigated the mechanisms of action underlying the biocontrol and bactericidal efficacy of bacitracin A against P. ananatis. Fluorescence microscopy and bacterial cell viability analyses revealed that the median effective concentration of bacitracin A against P. ananatis was 9.10 μg ml−1. Scanning and transmission electron microscopy showed that bacitracin A damaged the cell wall and membrane of P. ananatis. Quantitative real-time PCR indicated that the transcriptional expression of ftsZ, glmS, and gumD, which are involved in cell division, cell-wall biosynthesis, and extracellular polymeric substance biosynthesis, respectively, was upregulated at 12 h and significantly downregulated at 24 h after bacitracin A treatment in P. ananatis. Bacitracin A caused cell leakage and changes to membrane permeability in P. ananatis, supporting its use as a natural biocontrol agent for P. ananatis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Borshchevskaya L, Kalinina A, Sineokii S (2013) Design of a PCR test based on the gyrA gene sequence for the identification of closely related species of the Bacillus subtilis group. Appl Biochem Microbiol 49(7):646–655

    CAS  Google Scholar 

  2. Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611(1–2):91–97

    CAS  PubMed  Google Scholar 

  3. Choi O, Kim H, Lee Y, Kim J, Moon JS, Hwang I (2012) First report of sheath rot of rice caused by Pantoea ananatis in Korea. Plant Pathol J 28(3):331–332

    Google Scholar 

  4. Choi Y, Cho S, Simkhada J, Rahman M, Choi Y, Kim C, Yoo J (2017) A novel multifunctional peptide oligomer of bacitracin with possible bioindustrial and therapeutic applications from a Korean food-source Bacillus strain. PLoS ONE 12(5):e0176971

    PubMed  PubMed Central  Google Scholar 

  5. Ciesiołka J, Jeżowska-Bojczuk M, Wrzesiński J, Stokowa-Sołtys J, Nagaj J, Kasprowicz A, Błaszczyk L, Szczepanik W (2014) Antibiotic bacitracin induces hydrolytic degradation of nucleic acids. BBA-Gen Subj 1840(6):1782–1789

    Google Scholar 

  6. Cother E, Reinke R, Mckenzie C, Lanoiselet V, Noble D (2004) An unusual stem necrosis of rice caused by Pantoea ananas and the first record of this pathogen on rice in Australia. Plant Path 33(4):495–503

    CAS  Google Scholar 

  7. Coutinho T, Venter S (2009) Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol 10(3):325–335

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Drablos F, Nicholson D, Ronning M (1999) EXAFS study of zinc coordination in bacitracin A. BBA-Protern. Struct M 1431(2):433–442

    CAS  Google Scholar 

  9. Fravel D (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    CAS  PubMed  Google Scholar 

  10. Hancock R (2005) Mechanisms of action of newer antibiotics for Grampositive pathogens. Lancet Infect Dis 5(4):209–218

    CAS  PubMed  Google Scholar 

  11. Jin P, Wang H, Liu W, Zhang S, Lin C, Zheng F, Guo M (2017) Bactericidal metabolites from Phellinus noxius HN-1 against Microcystis aeruginosa. Sci Rep 7(1):3132–3141

    PubMed  PubMed Central  Google Scholar 

  12. Jin P, Wang H, Tan Z, Xuan Z, Dahar G, Li Q, Miao W, Liu W (2020) Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz. Pestic Biochem Phys 163:102–107

    CAS  Google Scholar 

  13. Kido K, Hasegawa M, Hioyuki M, Kobayashi M, Yuichi T (2010) Pantoea ananatis strains are differentiated into three groups based on reactions of tobacco and welsh onion and on genetic characteristics. J Gen Plant Pathol 76(3):208–218

    CAS  Google Scholar 

  14. Kim J, Kim B, Lee C (2007) Alga-lytic of Pseudomonas fluorescens against the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae). Biol Control 41(3):296–303

    Google Scholar 

  15. Konz D, Klens A, Schorgendorfer K, Marahiel M (1997) The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem Biol 4(12):927–937

    CAS  PubMed  Google Scholar 

  16. Li J, Wang N (2011) The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol Plant Pathol 12(4):381–396

    PubMed  Google Scholar 

  17. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDC (T) method. Methods 25(4):402–408

    CAS  Google Scholar 

  18. Maayer P, Chan W, Rubagotti E, Venter S, Toth I, Birch P, Coutinho T (2014) Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts. BMC Genomics 15(1):404–417

    PubMed  PubMed Central  Google Scholar 

  19. Magnet-Dana R, Peypoux F (1994) Iturins, a special class of poreforming lipopeptides: biological and physiological properties. Toxicology 87(1–3):151–174

    Google Scholar 

  20. Makovitzki A, Avrahami D, Shai Y (2006) Ultrashort antibacterial and antifungal lipopeptides. Proc Natl Acad Sci USA 103(43):15997–16002

    CAS  PubMed  Google Scholar 

  21. Mondal K, Mani C, Singh J, Kim J, Mudgett M (2011) A new leaf blight of rice caused by Pantoea ananatis in India. Plant Dis 95(12):1582–1583

    CAS  PubMed  Google Scholar 

  22. Morris M (1994) Primary structural confirmation of components of the bacitracin complex. Biol Mass Spectrom 23(2):61–70

    CAS  PubMed  Google Scholar 

  23. Moyne A, Shelby R, Cleveland T, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90(4):622–629

    CAS  PubMed  Google Scholar 

  24. Nasir M, Besson F (2012) Conformational analyses of bacillomycin D, a natural antimicrobial lipopeptide, alone or in interaction with lipid monolayers at the air-water interface. J Colloid Interf Sci 387(1):187–193

    CAS  Google Scholar 

  25. Oh E, Bae J, Kumar A, Choi H, Jeon B (2018) Antioxidant-based synergistic eradication of methicillin-resistant Staphylococcus aureus (MRSA) biofilms with bacitracin. Int J Antimicrob Ag. 52(1):96–99

    CAS  Google Scholar 

  26. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    CAS  PubMed  Google Scholar 

  27. Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biot 69(1):29–38

    CAS  Google Scholar 

  28. Pavli V, Kmetec V (2001) Optimization of HPLC method for stability testing of bacitracin. J Pharmaceut Biomed 24(5–6):977–982

    CAS  Google Scholar 

  29. Pollock T, Thorne L, Yamazaki M, Mikolajczak M, Armentrout R (1994) Mechanism of bacitracin resistance in gram-negative bacteria that synthesize exopolysaccharides. J Bacteriol 176(20):6229–6237

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Qian G, Zhou Y, Zhao Y, Song Z, Wang S, Fan J, Hu B, Venturi V, Liu F (2013) Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J Proteome Res 12(7):3327–3341

    CAS  PubMed  Google Scholar 

  31. Romero D, de Vicente A, Olmos J, Dávila J, Pérez-García A (2007) Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. J Appl Microbiol 103(4):969–976

    CAS  PubMed  Google Scholar 

  32. Schallmey M, Singh A, Ward O (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50(1):1–17

    CAS  PubMed  Google Scholar 

  33. Shyntum D, Theron J, Venter S, Moleleki L, Toth I, Coutinho T (2015) Pantoea ananatis utilizes a type VI secretion system for pathogenesis and bacterial competition. Mol Plant-Microbe Interact 28(4):420–431

    CAS  PubMed  Google Scholar 

  34. Silva I, Regasini L, Petrônio M, Silva D, Bolzani V, Belasque J, Sacramento L, Ferreira H (2012) Antibacterial activity of alkyl gallates against Xanthomonas citri subsp citri. J Bacteriol 195(1):85–94

    PubMed  Google Scholar 

  35. Skamnioti P, Gurr S (2009) Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol 27(3):141–150

    CAS  PubMed  Google Scholar 

  36. Stein T (2005) Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Mol Microbiol 56(4):845–857

    CAS  PubMed  Google Scholar 

  37. Stone K, Strominger J (1971) Mechanism of action of bacitracin: complexation with metalion and C55-isoprenyl pyrophosphate. P Natl Acad Sci 68(12):3223–3227

    CAS  Google Scholar 

  38. Storm D, Strominger J (1973) Complex formation between bacitracin peptides and isoprenyl pyrophosphates. The specificity of lipid-peptide interactions. J Biol Chem 248(11):3940–3945

    CAS  PubMed  Google Scholar 

  39. Straus S, Hancock R (2006) Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta Biomembr 1758(9):1215–1223

    CAS  Google Scholar 

  40. Suleiman S, Song F, Su M, Hang T, Song M (2017) Analysis of bacitracin and its related substances by liquid chromatography tandem mass spectrometry. J Pharm Anal 7(1):48–55

    PubMed  Google Scholar 

  41. Torres M, Jones J, Dangl J (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141(2):373–378

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang L, Lee F, Tai C, Kasai H (2007) Comparison of gyrB gene sequences, 16SrRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57(8):1846–1850

    CAS  PubMed  Google Scholar 

  43. Wang Q, Zheng H, Wan X, Huang H, Li J, Christopher T, Wang C, Chen S (2017) Optimization of inexpensive agricultural by-products as raw materials for bacitracin production in Bacillus licheniformis DW2. Appl Biochem Biotechnol 183(4):1146–1157

    CAS  PubMed  Google Scholar 

  44. Wu L, Wu H, Chen L, Yu X, Borriss R, Gao X (2015) Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci Rep 5:12975–12983

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yun M, Torres P, Oirdi M, Rigano L, Gonzalez-Lamothe R, Marano M, Castagnaro A, Dankert M, Bouarab K, Vojnov A (2006) Xanthan induces plant susceptibility by suppressing callose deposition. Plant Physiol 141(1):178–187

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeriouh H, Romero D, García-Gutiérrez L, Cazorla F, de Vicente A, Perez-Garcia A (2011) The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant-Microbe Interact 24(12):1540–1552

    CAS  PubMed  Google Scholar 

  47. Zuo W, Jin P, Dong W, Dai H, Mei W (2014) Metabolites from the endophytic fungus HP-1 of Chinese eaglewood. Chin J Nat Med 12(2):151–153

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Xuewen Gao (College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China) for a kind support. The authors declare no competing financial interests.

Funding

The funding was provided by the National Natural Science Foundation of China (Grant No. 31960552), the Scientific Research Foundation for Advanced Talents (Grant No. KYQD(ZR)1842) and Hainan Provincial Science and Technology Foundation Youth Talent Innovation Program (Grant No. QCXM201903).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Weiguo Miao.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest in this work.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Handling Editor: Jane Debode.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, P., Tan, Z., Wang, H. et al. Antimicrobial effect of Bacillus licheniformis HN-5 bacitracin A on rice pathogen Pantoea ananatis. BioControl 66, 249–257 (2021). https://doi.org/10.1007/s10526-020-10052-9

Download citation

Keywords

  • Antimicrobial activity
  • Biocontrol
  • Bacitracin A
  • Pantoea ananatis
  • Rice