Skip to main content

Advertisement

Log in

Novel biocontrol agents against Rhizoctonia solani and Sclerotinia sclerotiorum in lettuce

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The soilborne fungi Sclerotinia sclerotiorum and Rhizoctonia solani are among the most devastating pathogens for lettuce production. This study aimed to evaluate the efficacy of an Arthrobacter and Blastobotrys strain, named FP15 and FP12, respectively, against S. sclerotiorum and R. solani in lettuce. The incorporation of strains FP12 and FP15 in the transplant substrate plug of lettuce resulted in reduced S. sclerotiorum and R. solani caused symptoms. Transcriptomic analysis performed on the pathogenesis related (PR) gene PR1, LIPOXYGENASE (LOX) and ETHYLENE RESPONSE FACTOR 1 (ERF1), marker genes of the salicylic acid (SA), jasmonate (JA) and ethylene (ET) dependent defences, respectively, suggested the early triggering of the SA, ET and JA dependent defences and the constitutive triggering of the JA and JA/ET dependent defences by FP12 and FP15, respectively, upon R. solani and S. sclerotiorum infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alkooranee JT, Aledan TR, Ali AK, Lu G, Zhang X, Wu J, Fu C, Li M (2017) Detecting the hormonal pathways in oilseed rape behind induced systemic resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. PLoS ONE 12(1):e0168850

    Article  PubMed  PubMed Central  Google Scholar 

  • Argyris J, Dahal P, Hayashi E, Still DW, Bradford KJ (2008) Genetic variation for lettuce seed thermo inhibition is associated with temperature sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiol 148:926–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barriuso J, Ramos Solano B, Gutiérrez Mañero FJ (2008) Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 98:666–672

    Article  CAS  PubMed  Google Scholar 

  • Barrows-Broaddus J, Dwinell LD, Kerr TJ (1985) Evaluation of Arthrobacter sp. for biological control of pitch canker fungus (Fusarium moniliforme var. subglutinans) on slash pines. Can J Microbiol 31:888–892

    Article  Google Scholar 

  • Blok I, Vanderplaats-Niterink AJ (1978) Pythium uncinulatum sp. nov. and Pythium tracheiphilum pathogenic to lettuce. Neth J Plant Pathol 84:135–147

    Article  Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New York

    Google Scholar 

  • Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A (2015) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defence responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant Microbe Interact 28:984–995

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • De Cremer K, Mathys J, Vos C, Froenicke L, Michelmore RW, Cammue BPA, De Coninck B (2013) RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant Cell Environ 36:1992–2007

    PubMed  Google Scholar 

  • Fatouros G, Gkizi D, Fragkogeorgi G, Paplomatas EJ, Tjamos SE (2018) Biological control of Pythium, Rhizoctonia and Sclerotinia in lettuce: the plant protective activity of the bacterium Paenibacillus alvei K165 is associated with the induction of systemic resistance. Plant Pathol 67:418–425

    Article  CAS  Google Scholar 

  • Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. Eur J Plant Pathol 124:219–230

    Article  Google Scholar 

  • Guo X, Stotz HU (2007) Defence against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signalling. Mol Plant Microbe Interact 20:1384–1395

    Article  CAS  PubMed  Google Scholar 

  • Jiang C-H, Huang Z-Y, Xie P, Gu C, Li K, Wang D-C, Yu Y-Y, Fan Z-H, Wang C-J, Wang Y-P, Guo Y-H, Guo J-H (2016) Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. J Exp Bot 67:157–174

    Article  CAS  PubMed  Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2006) Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31:91–100

    Article  Google Scholar 

  • Kofoet A, Fricke A, Heine H, Hommes M, Richter E, Ulbrich A, Weier U (2001) Kopfsalatsorten und ihre anfalligkeit gegenuber bodenburtigen pathogenen. Gemuse 37:10–13

    Google Scholar 

  • Koornneef A, Pieterse CM (2008) Cross talk in defense signaling. Plant Physiol 146:839–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koths JS, Gunner HR (1967) Establishment of a rhizosphere microflora on carnation as a means of plant protection in steamed greenhouse soils. J Am Soc Hortic Sci 91:617–626

    Google Scholar 

  • Kumar A, Babu R, Bijulal S, Abraham M, Sasidharan P, Kathuria S, Sharma C, Meis JF, Chowdhary A (2014) Invasive mycosis due to species of Blastobotrys in immunocompromised patients with reduced susceptibility to antifungals. J Clin Microbiol 52:4094–4099

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayo S, Gutiérrez S, Malmierca MG, Lorenzana A, Campelo MP, Hermosa R, Casquero PA (2015) Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defence-related genes. Front Plant Sci 6:685

    Article  PubMed  PubMed Central  Google Scholar 

  • Mc Cormick SP, Price NPJ, Kurtzman CP (2012) Glucosylation and other biotransformations of T-2 toxin by yeasts of the Trichomonascus clade. Appl Environ Microbiol 78:8694–8702

    Article  CAS  Google Scholar 

  • Meldau S, Ullman-Zeunert L, Govind G, Bartram S, Baldwin IT (2012) MAPK-dependent JA and SA signalling in Nicotiana attenuata affects plant growth and fitness during competition with conspecifics. BMC Plant Biol 12:213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell R, Hurwitz E (1965) Suppression of Pythium debayanum by lytic rhizosphere bacteria. Phytopathology 55:156–158

    Google Scholar 

  • Morrisey RF, Dugan EP, Koths JS (1976) Chitinase production by an Arthrobacter sp. lysing cells of Fusarium roseum. Soil Biol Biochem 8:23–28

    Article  Google Scholar 

  • Papasotiriou FG, Varypatakis KG, Christofi N, Tjamos SE, Paplomatas EJ (2013) Olive mill wastes: a source of resistance for plants against Verticillium dahliae and a reservoir of biocontrol agents. Biol Control 67:51–60

    Article  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Reddy MS, Patrick ZA (1992) Colonization of tobacco seedling roots by fluorescent pseudomonad suppressive to black root rot caused by Thielaviopsis basicola. Crop Prot 11:148–154

    Article  Google Scholar 

  • Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Article  CAS  PubMed  Google Scholar 

  • Sneh B (1981) Use of rhizosphere chitinolytic bacteria for biological control of Fusarium oxysporum f. sp. dianthi in carnation. J Phytopathol 100:251–256

    Article  Google Scholar 

  • Thomma B, Eggermont K, Penninckx I, Mauch-Mani B, Vogelsang R, Cammue B, Broekaert W (1998) Separate jasmonate-dependent and salicylate-dependent defence-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 1:341–354

    Article  Google Scholar 

  • van Beneden S, Pannecoucque J, Debode J, De Backer G, Hofte M (2009) Characterisation of fungal pathogens causing basal rot of lettuce in Belgian greenhouses. Eur J Plant Pathol 124:9–19

    Article  Google Scholar 

  • Wachowska U, Packa D, Wiwart M (2017) Microbial inhibition of Fusarium pathogens and biological modification of trichothecenes in cereal grains. Toxins 9:408

    Article  PubMed Central  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Phytopathology Laboratory of the Agricultural University of Athens, Greece, for providing technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Tjamos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Handling Editor: Jane Debode

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggeli, F., Ziogas, I., Gkizi, D. et al. Novel biocontrol agents against Rhizoctonia solani and Sclerotinia sclerotiorum in lettuce. BioControl 65, 763–773 (2020). https://doi.org/10.1007/s10526-020-10043-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-020-10043-w

Keywords

Navigation